Metamath Proof Explorer


Theorem rnmptn0

Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rnmpt0f.1
|- F/ x ph
rnmpt0f.2
|- ( ( ph /\ x e. A ) -> B e. V )
rnmpt0f.3
|- F = ( x e. A |-> B )
rnmptn0.a
|- ( ph -> A =/= (/) )
Assertion rnmptn0
|- ( ph -> ran F =/= (/) )

Proof

Step Hyp Ref Expression
1 rnmpt0f.1
 |-  F/ x ph
2 rnmpt0f.2
 |-  ( ( ph /\ x e. A ) -> B e. V )
3 rnmpt0f.3
 |-  F = ( x e. A |-> B )
4 rnmptn0.a
 |-  ( ph -> A =/= (/) )
5 4 neneqd
 |-  ( ph -> -. A = (/) )
6 1 2 3 rnmpt0f
 |-  ( ph -> ( ran F = (/) <-> A = (/) ) )
7 5 6 mtbird
 |-  ( ph -> -. ran F = (/) )
8 7 neqned
 |-  ( ph -> ran F =/= (/) )