Metamath Proof Explorer


Theorem rnmptn0

Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rnmpt0f.1 xφ
rnmpt0f.2 φxABV
rnmpt0f.3 F=xAB
rnmptn0.a φA
Assertion rnmptn0 φranF

Proof

Step Hyp Ref Expression
1 rnmpt0f.1 xφ
2 rnmpt0f.2 φxABV
3 rnmpt0f.3 F=xAB
4 rnmptn0.a φA
5 4 neneqd φ¬A=
6 1 2 3 rnmpt0f φranF=A=
7 5 6 mtbird φ¬ranF=
8 7 neqned φranF