Metamath Proof Explorer


Theorem rnmpt0f

Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rnmpt0f.1 xφ
rnmpt0f.2 φxABV
rnmpt0f.3 F=xAB
Assertion rnmpt0f φranF=A=

Proof

Step Hyp Ref Expression
1 rnmpt0f.1 xφ
2 rnmpt0f.2 φxABV
3 rnmpt0f.3 F=xAB
4 2 ex φxABV
5 1 4 ralrimi φxABV
6 dmmptg xABVdomxAB=A
7 5 6 syl φdomxAB=A
8 7 eqcomd φA=domxAB
9 8 eqeq1d φA=domxAB=
10 dm0rn0 domxAB=ranxAB=
11 10 a1i φdomxAB=ranxAB=
12 3 rneqi ranF=ranxAB
13 12 a1i φranF=ranxAB
14 13 eqcomd φranxAB=ranF
15 14 eqeq1d φranxAB=ranF=
16 9 11 15 3bitrrd φranF=A=