| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rnmpt0f.1 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							rnmpt0f.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							rnmpt0f.3 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 4 | 
							
								2
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝐵  ∈  𝑉 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							ralrimi | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							dmmptg | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( 𝐴  =  ∅  ↔  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅ ) )  | 
						
						
							| 10 | 
							
								
							 | 
							dm0rn0 | 
							⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅ )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅ ) )  | 
						
						
							| 12 | 
							
								3
							 | 
							rneqi | 
							⊢ ran  𝐹  =  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( 𝜑  →  ran  𝐹  =  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ran  𝐹 )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  ran  𝐹  =  ∅ ) )  | 
						
						
							| 16 | 
							
								9 11 15
							 | 
							3bitrrd | 
							⊢ ( 𝜑  →  ( ran  𝐹  =  ∅  ↔  𝐴  =  ∅ ) )  |