Description: Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnresun | |- ran ( F |` ( A u. B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi | |- ( F |` ( A u. B ) ) = ( ( F |` A ) u. ( F |` B ) ) |
|
| 2 | 1 | rneqi | |- ran ( F |` ( A u. B ) ) = ran ( ( F |` A ) u. ( F |` B ) ) |
| 3 | rnun | |- ran ( ( F |` A ) u. ( F |` B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) ) |
|
| 4 | 2 3 | eqtri | |- ran ( F |` ( A u. B ) ) = ( ran ( F |` A ) u. ran ( F |` B ) ) |