Metamath Proof Explorer


Theorem rossspw

Description: A ring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1
|- Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) }
Assertion rossspw
|- ( S e. Q -> S C_ ~P O )

Proof

Step Hyp Ref Expression
1 isros.1
 |-  Q = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s A. y e. s ( ( x u. y ) e. s /\ ( x \ y ) e. s ) ) }
2 1 isros
 |-  ( S e. Q <-> ( S e. ~P ~P O /\ (/) e. S /\ A. u e. S A. v e. S ( ( u u. v ) e. S /\ ( u \ v ) e. S ) ) )
3 2 simp1bi
 |-  ( S e. Q -> S e. ~P ~P O )
4 3 elpwid
 |-  ( S e. Q -> S C_ ~P O )