Metamath Proof Explorer
		
		
		
		Description:  A ring of sets is a collection of subsets of O .  (Contributed by Thierry Arnoux, 18-Jul-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | isros.1 | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
				
					|  | Assertion | rossspw | ⊢  ( 𝑆  ∈  𝑄  →  𝑆  ⊆  𝒫  𝑂 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isros.1 | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 2 | 1 | isros | ⊢ ( 𝑆  ∈  𝑄  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) ) | 
						
							| 3 | 2 | simp1bi | ⊢ ( 𝑆  ∈  𝑄  →  𝑆  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 4 | 3 | elpwid | ⊢ ( 𝑆  ∈  𝑄  →  𝑆  ⊆  𝒫  𝑂 ) |