Metamath Proof Explorer


Theorem rossspw

Description: A ring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
Assertion rossspw ( 𝑆𝑄𝑆 ⊆ 𝒫 𝑂 )

Proof

Step Hyp Ref Expression
1 isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
2 1 isros ( 𝑆𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )
3 2 simp1bi ( 𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂 )
4 3 elpwid ( 𝑆𝑄𝑆 ⊆ 𝒫 𝑂 )