Metamath Proof Explorer
Description: A ring of sets is a collection of subsets of O . (Contributed by Thierry Arnoux, 18-Jul-2020)
|
|
Ref |
Expression |
|
Hypothesis |
isros.1 |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
|
Assertion |
rossspw |
⊢ ( 𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isros.1 |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
2 |
1
|
isros |
⊢ ( 𝑆 ∈ 𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |
3 |
2
|
simp1bi |
⊢ ( 𝑆 ∈ 𝑄 → 𝑆 ∈ 𝒫 𝒫 𝑂 ) |
4 |
3
|
elpwid |
⊢ ( 𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂 ) |