Step |
Hyp |
Ref |
Expression |
1 |
|
isros.1 |
⊢ 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) } |
2 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ↔ ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ) ) |
4 |
|
eleq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ↔ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ↔ ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) |
7 |
6
|
raleqbi1dv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) |
8 |
2 7
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑠 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑠 ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) ) |
9 |
8 1
|
elrab2 |
⊢ ( 𝑆 ∈ 𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) ) |
10 |
|
3anass |
⊢ ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ) ) |
11 |
|
uneq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∪ 𝑦 ) = ( 𝑢 ∪ 𝑦 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 ∪ 𝑦 ) ∈ 𝑆 ) ) |
13 |
|
difeq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∖ 𝑦 ) = ( 𝑢 ∖ 𝑦 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 ∖ 𝑦 ) ∈ 𝑆 ) ) |
15 |
12 14
|
anbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑢 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑦 ) ∈ 𝑆 ) ) ) |
16 |
|
uneq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 ∪ 𝑦 ) = ( 𝑢 ∪ 𝑣 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 ∪ 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ) ) |
18 |
|
difeq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 ∖ 𝑦 ) = ( 𝑢 ∖ 𝑣 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 ∖ 𝑦 ) ∈ 𝑆 ↔ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) |
20 |
17 19
|
anbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑢 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |
21 |
15 20
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ↔ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) |
22 |
21
|
3anbi3i |
⊢ ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 ∪ 𝑦 ) ∈ 𝑆 ∧ ( 𝑥 ∖ 𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |
23 |
9 10 22
|
3bitr2i |
⊢ ( 𝑆 ∈ 𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ 𝑆 ( ( 𝑢 ∪ 𝑣 ) ∈ 𝑆 ∧ ( 𝑢 ∖ 𝑣 ) ∈ 𝑆 ) ) ) |