Metamath Proof Explorer


Theorem isros

Description: The property of being a rings of sets, i.e. containing the empty set, and closed under finite union and set complement. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
Assertion isros ( 𝑆𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
2 eleq2 ( 𝑠 = 𝑆 → ( ∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆 ) )
3 eleq2 ( 𝑠 = 𝑆 → ( ( 𝑥𝑦 ) ∈ 𝑠 ↔ ( 𝑥𝑦 ) ∈ 𝑆 ) )
4 eleq2 ( 𝑠 = 𝑆 → ( ( 𝑥𝑦 ) ∈ 𝑠 ↔ ( 𝑥𝑦 ) ∈ 𝑆 ) )
5 3 4 anbi12d ( 𝑠 = 𝑆 → ( ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ↔ ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) )
6 5 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ↔ ∀ 𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) )
7 6 raleqbi1dv ( 𝑠 = 𝑆 → ( ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ↔ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) )
8 2 7 anbi12d ( 𝑠 = 𝑆 → ( ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) ) )
9 8 1 elrab2 ( 𝑆𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) ) )
10 3anass ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) ) )
11 uneq1 ( 𝑥 = 𝑢 → ( 𝑥𝑦 ) = ( 𝑢𝑦 ) )
12 11 eleq1d ( 𝑥 = 𝑢 → ( ( 𝑥𝑦 ) ∈ 𝑆 ↔ ( 𝑢𝑦 ) ∈ 𝑆 ) )
13 difeq1 ( 𝑥 = 𝑢 → ( 𝑥𝑦 ) = ( 𝑢𝑦 ) )
14 13 eleq1d ( 𝑥 = 𝑢 → ( ( 𝑥𝑦 ) ∈ 𝑆 ↔ ( 𝑢𝑦 ) ∈ 𝑆 ) )
15 12 14 anbi12d ( 𝑥 = 𝑢 → ( ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑢𝑦 ) ∈ 𝑆 ∧ ( 𝑢𝑦 ) ∈ 𝑆 ) ) )
16 uneq2 ( 𝑦 = 𝑣 → ( 𝑢𝑦 ) = ( 𝑢𝑣 ) )
17 16 eleq1d ( 𝑦 = 𝑣 → ( ( 𝑢𝑦 ) ∈ 𝑆 ↔ ( 𝑢𝑣 ) ∈ 𝑆 ) )
18 difeq2 ( 𝑦 = 𝑣 → ( 𝑢𝑦 ) = ( 𝑢𝑣 ) )
19 18 eleq1d ( 𝑦 = 𝑣 → ( ( 𝑢𝑦 ) ∈ 𝑆 ↔ ( 𝑢𝑣 ) ∈ 𝑆 ) )
20 17 19 anbi12d ( 𝑦 = 𝑣 → ( ( ( 𝑢𝑦 ) ∈ 𝑆 ∧ ( 𝑢𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )
21 15 20 cbvral2vw ( ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ↔ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) )
22 21 3anbi3i ( ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( ( 𝑥𝑦 ) ∈ 𝑆 ∧ ( 𝑥𝑦 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )
23 9 10 22 3bitr2i ( 𝑆𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )