| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isros.1 | ⊢ 𝑄  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) ) } | 
						
							| 2 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ∅  ∈  𝑠  ↔  ∅  ∈  𝑆 ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ↔  ( 𝑥  ∪  𝑦 )  ∈  𝑆 ) ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑥  ∖  𝑦 )  ∈  𝑠  ↔  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) | 
						
							| 5 | 3 4 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 )  ↔  ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 6 | 5 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 )  ↔  ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 7 | 6 | raleqbi1dv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 8 | 2 7 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑠 ( ( 𝑥  ∪  𝑦 )  ∈  𝑠  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑠 ) )  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 9 | 8 1 | elrab2 | ⊢ ( 𝑆  ∈  𝑄  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 10 |  | 3anass | ⊢ ( ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) )  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ( ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) ) ) ) | 
						
							| 11 |  | uneq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  ∪  𝑦 )  =  ( 𝑢  ∪  𝑦 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ↔  ( 𝑢  ∪  𝑦 )  ∈  𝑆 ) ) | 
						
							| 13 |  | difeq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  ∖  𝑦 )  =  ( 𝑢  ∖  𝑦 ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥  ∖  𝑦 )  ∈  𝑆  ↔  ( 𝑢  ∖  𝑦 )  ∈  𝑆 ) ) | 
						
							| 15 | 12 14 | anbi12d | ⊢ ( 𝑥  =  𝑢  →  ( ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 )  ↔  ( ( 𝑢  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑦 )  ∈  𝑆 ) ) ) | 
						
							| 16 |  | uneq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑢  ∪  𝑦 )  =  ( 𝑢  ∪  𝑣 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢  ∪  𝑦 )  ∈  𝑆  ↔  ( 𝑢  ∪  𝑣 )  ∈  𝑆 ) ) | 
						
							| 18 |  | difeq2 | ⊢ ( 𝑦  =  𝑣  →  ( 𝑢  ∖  𝑦 )  =  ( 𝑢  ∖  𝑣 ) ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢  ∖  𝑦 )  ∈  𝑆  ↔  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) | 
						
							| 20 | 17 19 | anbi12d | ⊢ ( 𝑦  =  𝑣  →  ( ( ( 𝑢  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑦 )  ∈  𝑆 )  ↔  ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) ) | 
						
							| 21 | 15 20 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 )  ↔  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) | 
						
							| 22 | 21 | 3anbi3i | ⊢ ( ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( ( 𝑥  ∪  𝑦 )  ∈  𝑆  ∧  ( 𝑥  ∖  𝑦 )  ∈  𝑆 ) )  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) ) | 
						
							| 23 | 9 10 22 | 3bitr2i | ⊢ ( 𝑆  ∈  𝑄  ↔  ( 𝑆  ∈  𝒫  𝒫  𝑂  ∧  ∅  ∈  𝑆  ∧  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  ( 𝑢  ∖  𝑣 )  ∈  𝑆 ) ) ) |