Metamath Proof Explorer


Theorem isros

Description: The property of being a rings of sets, i.e. containing the empty set, and closed under finite union and set complement. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 Q=s𝒫𝒫O|sxsysxysxys
Assertion isros SQS𝒫𝒫OSuSvSuvSuvS

Proof

Step Hyp Ref Expression
1 isros.1 Q=s𝒫𝒫O|sxsysxysxys
2 eleq2 s=SsS
3 eleq2 s=SxysxyS
4 eleq2 s=SxysxyS
5 3 4 anbi12d s=SxysxysxySxyS
6 5 raleqbi1dv s=SysxysxysySxySxyS
7 6 raleqbi1dv s=SxsysxysxysxSySxySxyS
8 2 7 anbi12d s=SsxsysxysxysSxSySxySxyS
9 8 1 elrab2 SQS𝒫𝒫OSxSySxySxyS
10 3anass S𝒫𝒫OSxSySxySxySS𝒫𝒫OSxSySxySxyS
11 uneq1 x=uxy=uy
12 11 eleq1d x=uxySuyS
13 difeq1 x=uxy=uy
14 13 eleq1d x=uxySuyS
15 12 14 anbi12d x=uxySxySuySuyS
16 uneq2 y=vuy=uv
17 16 eleq1d y=vuySuvS
18 difeq2 y=vuy=uv
19 18 eleq1d y=vuySuvS
20 17 19 anbi12d y=vuySuySuvSuvS
21 15 20 cbvral2vw xSySxySxySuSvSuvSuvS
22 21 3anbi3i S𝒫𝒫OSxSySxySxySS𝒫𝒫OSuSvSuvSuvS
23 9 10 22 3bitr2i SQS𝒫𝒫OSuSvSuvSuvS