Metamath Proof Explorer


Theorem 0elros

Description: A ring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
Assertion 0elros ( 𝑆𝑄 → ∅ ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 isros.1 𝑄 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠𝑦𝑠 ( ( 𝑥𝑦 ) ∈ 𝑠 ∧ ( 𝑥𝑦 ) ∈ 𝑠 ) ) }
2 1 isros ( 𝑆𝑄 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀ 𝑢𝑆𝑣𝑆 ( ( 𝑢𝑣 ) ∈ 𝑆 ∧ ( 𝑢𝑣 ) ∈ 𝑆 ) ) )
3 2 simp2bi ( 𝑆𝑄 → ∅ ∈ 𝑆 )