Metamath Proof Explorer


Theorem 0elros

Description: A ring of sets contains the empty set. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
Assertion 0elros S Q S

Proof

Step Hyp Ref Expression
1 isros.1 Q = s 𝒫 𝒫 O | s x s y s x y s x y s
2 1 isros S Q S 𝒫 𝒫 O S u S v S u v S u v S
3 2 simp2bi S Q S