Metamath Proof Explorer


Theorem rp-oelim2

Description: The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of Schloeder p. 10. See oelimcl . (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion rp-oelim2
|- ( ( ( A e. On /\ 1o e. A ) /\ ( Lim B /\ B e. V ) ) -> Lim ( A ^o B ) )

Proof

Step Hyp Ref Expression
1 ondif2
 |-  ( A e. ( On \ 2o ) <-> ( A e. On /\ 1o e. A ) )
2 1 biimpri
 |-  ( ( A e. On /\ 1o e. A ) -> A e. ( On \ 2o ) )
3 pm3.22
 |-  ( ( Lim B /\ B e. V ) -> ( B e. V /\ Lim B ) )
4 oelimcl
 |-  ( ( A e. ( On \ 2o ) /\ ( B e. V /\ Lim B ) ) -> Lim ( A ^o B ) )
5 2 3 4 syl2an
 |-  ( ( ( A e. On /\ 1o e. A ) /\ ( Lim B /\ B e. V ) ) -> Lim ( A ^o B ) )