Metamath Proof Explorer


Theorem rp-oelim2

Description: The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of Schloeder p. 10. See oelimcl . (Contributed by RP, 30-Jan-2025)

Ref Expression
Assertion rp-oelim2 ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → Lim ( 𝐴o 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ondif2 ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o𝐴 ) )
2 1 biimpri ( ( 𝐴 ∈ On ∧ 1o𝐴 ) → 𝐴 ∈ ( On ∖ 2o ) )
3 pm3.22 ( ( Lim 𝐵𝐵𝑉 ) → ( 𝐵𝑉 ∧ Lim 𝐵 ) )
4 oelimcl ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵𝑉 ∧ Lim 𝐵 ) ) → Lim ( 𝐴o 𝐵 ) )
5 2 3 4 syl2an ( ( ( 𝐴 ∈ On ∧ 1o𝐴 ) ∧ ( Lim 𝐵𝐵𝑉 ) ) → Lim ( 𝐴o 𝐵 ) )