Description: The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of Schloeder p. 10. See oelimcl . (Contributed by RP, 30-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-oelim2 | ⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif2 | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) ↔ ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ) | |
2 | 1 | biimpri | ⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) → 𝐴 ∈ ( On ∖ 2o ) ) |
3 | pm3.22 | ⊢ ( ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ Lim 𝐵 ) ) | |
4 | oelimcl | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝑉 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) | |
5 | 2 3 4 | syl2an | ⊢ ( ( ( 𝐴 ∈ On ∧ 1o ∈ 𝐴 ) ∧ ( Lim 𝐵 ∧ 𝐵 ∈ 𝑉 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |