| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) |
| 2 |
|
limelon |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) → 𝐵 ∈ On ) |
| 3 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 5 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Ord ( 𝐴 ↑o 𝐵 ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐴 ∈ On ) |
| 8 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → 𝐵 ∈ On ) |
| 9 |
|
dif20el |
⊢ ( 𝐴 ∈ ( On ∖ 2o ) → ∅ ∈ 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ 𝐴 ) |
| 11 |
|
oen0 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 12 |
7 8 10 11
|
syl21anc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 13 |
|
oelim2 |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) |
| 14 |
1 13
|
sylan |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝐴 ↑o 𝐵 ) = ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) |
| 15 |
14
|
eleq2d |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ↔ 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ) ) |
| 16 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) ↔ ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) |
| 17 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 1o ) → 𝑦 ∈ 𝐵 ) |
| 18 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ On ) |
| 19 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐵 ∈ On ) |
| 20 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 21 |
|
onelon |
⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑦 ∈ On ) |
| 23 |
|
oecl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 24 |
18 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ On ) |
| 25 |
|
eloni |
⊢ ( ( 𝐴 ↑o 𝑦 ) ∈ On → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → Ord ( 𝐴 ↑o 𝑦 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) |
| 28 |
|
ordsucss |
⊢ ( Ord ( 𝐴 ↑o 𝑦 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) ) |
| 29 |
26 27 28
|
sylc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝐴 ∈ ( On ∖ 2o ) ) |
| 31 |
|
oeordi |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 32 |
19 30 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝑦 ∈ 𝐵 → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 33 |
20 32
|
mpd |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 34 |
|
onelon |
⊢ ( ( ( 𝐴 ↑o 𝑦 ) ∈ On ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) → 𝑥 ∈ On ) |
| 35 |
24 27 34
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → 𝑥 ∈ On ) |
| 36 |
|
onsuc |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ On ) |
| 38 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 39 |
|
ontr2 |
⊢ ( ( suc 𝑥 ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → ( ( suc 𝑥 ⊆ ( 𝐴 ↑o 𝑦 ) ∧ ( 𝐴 ↑o 𝑦 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 41 |
29 33 40
|
mp2and |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) ) ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 42 |
41
|
expr |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 43 |
17 42
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐵 ∖ 1o ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 44 |
43
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( ∃ 𝑦 ∈ ( 𝐵 ∖ 1o ) 𝑥 ∈ ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 45 |
16 44
|
biimtrid |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ∪ 𝑦 ∈ ( 𝐵 ∖ 1o ) ( 𝐴 ↑o 𝑦 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 46 |
15 45
|
sylbid |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) → suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 47 |
46
|
ralrimiv |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 48 |
|
dflim4 |
⊢ ( Lim ( 𝐴 ↑o 𝐵 ) ↔ ( Ord ( 𝐴 ↑o 𝐵 ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) suc 𝑥 ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 49 |
6 12 47 48
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ ( 𝐵 ∈ 𝐶 ∧ Lim 𝐵 ) ) → Lim ( 𝐴 ↑o 𝐵 ) ) |