| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|
| 2 |
|
limelon |
|
| 3 |
|
oecl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
eloni |
|
| 6 |
4 5
|
syl |
|
| 7 |
1
|
adantr |
|
| 8 |
2
|
adantl |
|
| 9 |
|
dif20el |
|
| 10 |
9
|
adantr |
|
| 11 |
|
oen0 |
|
| 12 |
7 8 10 11
|
syl21anc |
|
| 13 |
|
oelim2 |
|
| 14 |
1 13
|
sylan |
|
| 15 |
14
|
eleq2d |
|
| 16 |
|
eliun |
|
| 17 |
|
eldifi |
|
| 18 |
7
|
adantr |
|
| 19 |
8
|
adantr |
|
| 20 |
|
simprl |
|
| 21 |
|
onelon |
|
| 22 |
19 20 21
|
syl2anc |
|
| 23 |
|
oecl |
|
| 24 |
18 22 23
|
syl2anc |
|
| 25 |
|
eloni |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
simprr |
|
| 28 |
|
ordsucss |
|
| 29 |
26 27 28
|
sylc |
|
| 30 |
|
simpll |
|
| 31 |
|
oeordi |
|
| 32 |
19 30 31
|
syl2anc |
|
| 33 |
20 32
|
mpd |
|
| 34 |
|
onelon |
|
| 35 |
24 27 34
|
syl2anc |
|
| 36 |
|
onsuc |
|
| 37 |
35 36
|
syl |
|
| 38 |
4
|
adantr |
|
| 39 |
|
ontr2 |
|
| 40 |
37 38 39
|
syl2anc |
|
| 41 |
29 33 40
|
mp2and |
|
| 42 |
41
|
expr |
|
| 43 |
17 42
|
sylan2 |
|
| 44 |
43
|
rexlimdva |
|
| 45 |
16 44
|
biimtrid |
|
| 46 |
15 45
|
sylbid |
|
| 47 |
46
|
ralrimiv |
|
| 48 |
|
dflim4 |
|
| 49 |
6 12 47 48
|
syl3anbrc |
|