Metamath Proof Explorer


Theorem oeeulem

Description: Lemma for oeeu . (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Hypothesis oeeu.1 X=xOn|BA𝑜x
Assertion oeeulem AOn2𝑜BOn1𝑜XOnA𝑜XBBA𝑜sucX

Proof

Step Hyp Ref Expression
1 oeeu.1 X=xOn|BA𝑜x
2 eldifi BOn1𝑜BOn
3 2 adantl AOn2𝑜BOn1𝑜BOn
4 onsuc BOnsucBOn
5 3 4 syl AOn2𝑜BOn1𝑜sucBOn
6 oeworde AOn2𝑜sucBOnsucBA𝑜sucB
7 5 6 syldan AOn2𝑜BOn1𝑜sucBA𝑜sucB
8 sucidg BOnBsucB
9 3 8 syl AOn2𝑜BOn1𝑜BsucB
10 7 9 sseldd AOn2𝑜BOn1𝑜BA𝑜sucB
11 oveq2 x=sucBA𝑜x=A𝑜sucB
12 11 eleq2d x=sucBBA𝑜xBA𝑜sucB
13 12 rspcev sucBOnBA𝑜sucBxOnBA𝑜x
14 5 10 13 syl2anc AOn2𝑜BOn1𝑜xOnBA𝑜x
15 onintrab2 xOnBA𝑜xxOn|BA𝑜xOn
16 14 15 sylib AOn2𝑜BOn1𝑜xOn|BA𝑜xOn
17 onuni xOn|BA𝑜xOnxOn|BA𝑜xOn
18 16 17 syl AOn2𝑜BOn1𝑜xOn|BA𝑜xOn
19 1 18 eqeltrid AOn2𝑜BOn1𝑜XOn
20 sucidg XOnXsucX
21 19 20 syl AOn2𝑜BOn1𝑜XsucX
22 suceq X=xOn|BA𝑜xsucX=sucxOn|BA𝑜x
23 1 22 ax-mp sucX=sucxOn|BA𝑜x
24 dif1o BOn1𝑜BOnB
25 24 simprbi BOn1𝑜B
26 25 adantl AOn2𝑜BOn1𝑜B
27 ssrab2 xOn|BA𝑜xOn
28 rabn0 xOn|BA𝑜xxOnBA𝑜x
29 14 28 sylibr AOn2𝑜BOn1𝑜xOn|BA𝑜x
30 onint xOn|BA𝑜xOnxOn|BA𝑜xxOn|BA𝑜xxOn|BA𝑜x
31 27 29 30 sylancr AOn2𝑜BOn1𝑜xOn|BA𝑜xxOn|BA𝑜x
32 eleq1 xOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜xxOn|BA𝑜x
33 31 32 syl5ibcom AOn2𝑜BOn1𝑜xOn|BA𝑜x=xOn|BA𝑜x
34 oveq2 x=A𝑜x=A𝑜
35 34 eleq2d x=BA𝑜xBA𝑜
36 35 elrab xOn|BA𝑜xOnBA𝑜
37 36 simprbi xOn|BA𝑜xBA𝑜
38 eldifi AOn2𝑜AOn
39 38 adantr AOn2𝑜BOn1𝑜AOn
40 oe0 AOnA𝑜=1𝑜
41 39 40 syl AOn2𝑜BOn1𝑜A𝑜=1𝑜
42 41 eleq2d AOn2𝑜BOn1𝑜BA𝑜B1𝑜
43 el1o B1𝑜B=
44 42 43 bitrdi AOn2𝑜BOn1𝑜BA𝑜B=
45 37 44 imbitrid AOn2𝑜BOn1𝑜xOn|BA𝑜xB=
46 33 45 syld AOn2𝑜BOn1𝑜xOn|BA𝑜x=B=
47 46 necon3ad AOn2𝑜BOn1𝑜B¬xOn|BA𝑜x=
48 26 47 mpd AOn2𝑜BOn1𝑜¬xOn|BA𝑜x=
49 limuni LimxOn|BA𝑜xxOn|BA𝑜x=xOn|BA𝑜x
50 49 1 eqtr4di LimxOn|BA𝑜xxOn|BA𝑜x=X
51 50 adantl AOn2𝑜BOn1𝑜LimxOn|BA𝑜xxOn|BA𝑜x=X
52 31 adantr AOn2𝑜BOn1𝑜LimxOn|BA𝑜xxOn|BA𝑜xxOn|BA𝑜x
53 51 52 eqeltrrd AOn2𝑜BOn1𝑜LimxOn|BA𝑜xXxOn|BA𝑜x
54 oveq2 y=XA𝑜y=A𝑜X
55 54 eleq2d y=XBA𝑜yBA𝑜X
56 oveq2 x=yA𝑜x=A𝑜y
57 56 eleq2d x=yBA𝑜xBA𝑜y
58 57 cbvrabv xOn|BA𝑜x=yOn|BA𝑜y
59 55 58 elrab2 XxOn|BA𝑜xXOnBA𝑜X
60 59 simprbi XxOn|BA𝑜xBA𝑜X
61 53 60 syl AOn2𝑜BOn1𝑜LimxOn|BA𝑜xBA𝑜X
62 38 ad2antrr AOn2𝑜BOn1𝑜LimxOn|BA𝑜xAOn
63 limeq xOn|BA𝑜x=XLimxOn|BA𝑜xLimX
64 50 63 syl LimxOn|BA𝑜xLimxOn|BA𝑜xLimX
65 64 ibi LimxOn|BA𝑜xLimX
66 19 65 anim12i AOn2𝑜BOn1𝑜LimxOn|BA𝑜xXOnLimX
67 dif20el AOn2𝑜A
68 67 ad2antrr AOn2𝑜BOn1𝑜LimxOn|BA𝑜xA
69 oelim AOnXOnLimXAA𝑜X=yXA𝑜y
70 62 66 68 69 syl21anc AOn2𝑜BOn1𝑜LimxOn|BA𝑜xA𝑜X=yXA𝑜y
71 61 70 eleqtrd AOn2𝑜BOn1𝑜LimxOn|BA𝑜xByXA𝑜y
72 eliun ByXA𝑜yyXBA𝑜y
73 71 72 sylib AOn2𝑜BOn1𝑜LimxOn|BA𝑜xyXBA𝑜y
74 19 adantr AOn2𝑜BOn1𝑜LimxOn|BA𝑜xXOn
75 onss XOnXOn
76 74 75 syl AOn2𝑜BOn1𝑜LimxOn|BA𝑜xXOn
77 76 sselda AOn2𝑜BOn1𝑜LimxOn|BA𝑜xyXyOn
78 51 eleq2d AOn2𝑜BOn1𝑜LimxOn|BA𝑜xyxOn|BA𝑜xyX
79 78 biimpar AOn2𝑜BOn1𝑜LimxOn|BA𝑜xyXyxOn|BA𝑜x
80 57 onnminsb yOnyxOn|BA𝑜x¬BA𝑜y
81 77 79 80 sylc AOn2𝑜BOn1𝑜LimxOn|BA𝑜xyX¬BA𝑜y
82 81 nrexdv AOn2𝑜BOn1𝑜LimxOn|BA𝑜x¬yXBA𝑜y
83 73 82 pm2.65da AOn2𝑜BOn1𝑜¬LimxOn|BA𝑜x
84 ioran ¬xOn|BA𝑜x=LimxOn|BA𝑜x¬xOn|BA𝑜x=¬LimxOn|BA𝑜x
85 48 83 84 sylanbrc AOn2𝑜BOn1𝑜¬xOn|BA𝑜x=LimxOn|BA𝑜x
86 eloni xOn|BA𝑜xOnOrdxOn|BA𝑜x
87 unizlim OrdxOn|BA𝑜xxOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜x=LimxOn|BA𝑜x
88 16 86 87 3syl AOn2𝑜BOn1𝑜xOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜x=LimxOn|BA𝑜x
89 85 88 mtbird AOn2𝑜BOn1𝑜¬xOn|BA𝑜x=xOn|BA𝑜x
90 orduniorsuc OrdxOn|BA𝑜xxOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜x=sucxOn|BA𝑜x
91 16 86 90 3syl AOn2𝑜BOn1𝑜xOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜x=sucxOn|BA𝑜x
92 91 ord AOn2𝑜BOn1𝑜¬xOn|BA𝑜x=xOn|BA𝑜xxOn|BA𝑜x=sucxOn|BA𝑜x
93 89 92 mpd AOn2𝑜BOn1𝑜xOn|BA𝑜x=sucxOn|BA𝑜x
94 23 93 eqtr4id AOn2𝑜BOn1𝑜sucX=xOn|BA𝑜x
95 21 94 eleqtrd AOn2𝑜BOn1𝑜XxOn|BA𝑜x
96 58 inteqi xOn|BA𝑜x=yOn|BA𝑜y
97 95 96 eleqtrdi AOn2𝑜BOn1𝑜XyOn|BA𝑜y
98 55 onnminsb XOnXyOn|BA𝑜y¬BA𝑜X
99 19 97 98 sylc AOn2𝑜BOn1𝑜¬BA𝑜X
100 oecl AOnXOnA𝑜XOn
101 39 19 100 syl2anc AOn2𝑜BOn1𝑜A𝑜XOn
102 ontri1 A𝑜XOnBOnA𝑜XB¬BA𝑜X
103 101 3 102 syl2anc AOn2𝑜BOn1𝑜A𝑜XB¬BA𝑜X
104 99 103 mpbird AOn2𝑜BOn1𝑜A𝑜XB
105 94 31 eqeltrd AOn2𝑜BOn1𝑜sucXxOn|BA𝑜x
106 oveq2 y=sucXA𝑜y=A𝑜sucX
107 106 eleq2d y=sucXBA𝑜yBA𝑜sucX
108 107 58 elrab2 sucXxOn|BA𝑜xsucXOnBA𝑜sucX
109 108 simprbi sucXxOn|BA𝑜xBA𝑜sucX
110 105 109 syl AOn2𝑜BOn1𝑜BA𝑜sucX
111 19 104 110 3jca AOn2𝑜BOn1𝑜XOnA𝑜XBBA𝑜sucX