Metamath Proof Explorer


Theorem orduniorsuc

Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003)

Ref Expression
Assertion orduniorsuc Ord A A = A A = suc A

Proof

Step Hyp Ref Expression
1 orduniss Ord A A A
2 orduni Ord A Ord A
3 ordelssne Ord A Ord A A A A A A A
4 2 3 mpancom Ord A A A A A A A
5 4 biimprd Ord A A A A A A A
6 1 5 mpand Ord A A A A A
7 ordsucss Ord A A A suc A A
8 6 7 syld Ord A A A suc A A
9 ordsucuni Ord A A suc A
10 8 9 jctild Ord A A A A suc A suc A A
11 df-ne A A ¬ A = A
12 necom A A A A
13 11 12 bitr3i ¬ A = A A A
14 eqss A = suc A A suc A suc A A
15 10 13 14 3imtr4g Ord A ¬ A = A A = suc A
16 15 orrd Ord A A = A A = suc A