Metamath Proof Explorer


Theorem rpgecld

Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
rpgecld.2
|- ( ph -> B e. RR+ )
rpgecld.3
|- ( ph -> B <_ A )
Assertion rpgecld
|- ( ph -> A e. RR+ )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 rpgecld.2
 |-  ( ph -> B e. RR+ )
3 rpgecld.3
 |-  ( ph -> B <_ A )
4 rpgecl
 |-  ( ( B e. RR+ /\ A e. RR /\ B <_ A ) -> A e. RR+ )
5 2 1 3 4 syl3anc
 |-  ( ph -> A e. RR+ )