Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpgecld.1 | |- ( ph -> A e. RR ) |
|
rpgecld.2 | |- ( ph -> B e. RR+ ) |
||
rpgecld.3 | |- ( ph -> B <_ A ) |
||
Assertion | rpgecld | |- ( ph -> A e. RR+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | |- ( ph -> A e. RR ) |
|
2 | rpgecld.2 | |- ( ph -> B e. RR+ ) |
|
3 | rpgecld.3 | |- ( ph -> B <_ A ) |
|
4 | rpgecl | |- ( ( B e. RR+ /\ A e. RR /\ B <_ A ) -> A e. RR+ ) |
|
5 | 2 1 3 4 | syl3anc | |- ( ph -> A e. RR+ ) |