Metamath Proof Explorer


Theorem rpxrd

Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1
|- ( ph -> A e. RR+ )
Assertion rpxrd
|- ( ph -> A e. RR* )

Proof

Step Hyp Ref Expression
1 rpred.1
 |-  ( ph -> A e. RR+ )
2 1 rpred
 |-  ( ph -> A e. RR )
3 2 rexrd
 |-  ( ph -> A e. RR* )