Description: For a real-value random variable X , any open interval in RR is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
| rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
||
| Assertion | rrvfinvima | |- ( ph -> A. y e. BrSiga ( `' X " y ) e. dom P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | |- ( ph -> P e. Prob ) |
|
| 2 | rrvvf.1 | |- ( ph -> X e. ( rRndVar ` P ) ) |
|
| 3 | 1 | isrrvv | |- ( ph -> ( X e. ( rRndVar ` P ) <-> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) ) |
| 4 | 2 3 | mpbid | |- ( ph -> ( X : U. dom P --> RR /\ A. y e. BrSiga ( `' X " y ) e. dom P ) ) |
| 5 | 4 | simprd | |- ( ph -> A. y e. BrSiga ( `' X " y ) e. dom P ) |