Step |
Hyp |
Ref |
Expression |
1 |
|
rspsnid.b |
|- B = ( Base ` R ) |
2 |
|
rspsnid.k |
|- K = ( RSpan ` R ) |
3 |
|
snssi |
|- ( G e. B -> { G } C_ B ) |
4 |
2 1
|
rspssid |
|- ( ( R e. Ring /\ { G } C_ B ) -> { G } C_ ( K ` { G } ) ) |
5 |
3 4
|
sylan2 |
|- ( ( R e. Ring /\ G e. B ) -> { G } C_ ( K ` { G } ) ) |
6 |
|
snssg |
|- ( G e. B -> ( G e. ( K ` { G } ) <-> { G } C_ ( K ` { G } ) ) ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ G e. B ) -> ( G e. ( K ` { G } ) <-> { G } C_ ( K ` { G } ) ) ) |
8 |
5 7
|
mpbird |
|- ( ( R e. Ring /\ G e. B ) -> G e. ( K ` { G } ) ) |