Metamath Proof Explorer


Theorem s1chn

Description: A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypothesis s1chn.1
|- ( ph -> X e. A )
Assertion s1chn
|- ( ph -> <" X "> e. ( .< Chain A ) )

Proof

Step Hyp Ref Expression
1 s1chn.1
 |-  ( ph -> X e. A )
2 1 s1cld
 |-  ( ph -> <" X "> e. Word A )
3 ral0
 |-  A. n e. (/) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n )
4 s1dm
 |-  dom <" X "> = { 0 }
5 4 difeq1i
 |-  ( dom <" X "> \ { 0 } ) = ( { 0 } \ { 0 } )
6 difid
 |-  ( { 0 } \ { 0 } ) = (/)
7 5 6 eqtri
 |-  ( dom <" X "> \ { 0 } ) = (/)
8 7 raleqi
 |-  ( A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) <-> A. n e. (/) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) )
9 3 8 mpbir
 |-  A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n )
10 ischn
 |-  ( <" X "> e. ( .< Chain A ) <-> ( <" X "> e. Word A /\ A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) ) )
11 2 9 10 sylanblrc
 |-  ( ph -> <" X "> e. ( .< Chain A ) )