| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s1chn.1 |
|- ( ph -> X e. A ) |
| 2 |
1
|
s1cld |
|- ( ph -> <" X "> e. Word A ) |
| 3 |
|
ral0 |
|- A. n e. (/) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) |
| 4 |
|
s1dm |
|- dom <" X "> = { 0 } |
| 5 |
4
|
difeq1i |
|- ( dom <" X "> \ { 0 } ) = ( { 0 } \ { 0 } ) |
| 6 |
|
difid |
|- ( { 0 } \ { 0 } ) = (/) |
| 7 |
5 6
|
eqtri |
|- ( dom <" X "> \ { 0 } ) = (/) |
| 8 |
7
|
raleqi |
|- ( A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) <-> A. n e. (/) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) ) |
| 9 |
3 8
|
mpbir |
|- A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) |
| 10 |
|
ischn |
|- ( <" X "> e. ( .< Chain A ) <-> ( <" X "> e. Word A /\ A. n e. ( dom <" X "> \ { 0 } ) ( <" X "> ` ( n - 1 ) ) .< ( <" X "> ` n ) ) ) |
| 11 |
2 9 10
|
sylanblrc |
|- ( ph -> <" X "> e. ( .< Chain A ) ) |