Metamath Proof Explorer


Theorem s1chn

Description: A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025)

Ref Expression
Hypothesis s1chn.1 ( 𝜑𝑋𝐴 )
Assertion s1chn ( 𝜑 → ⟨“ 𝑋 ”⟩ ∈ ( < Chain 𝐴 ) )

Proof

Step Hyp Ref Expression
1 s1chn.1 ( 𝜑𝑋𝐴 )
2 1 s1cld ( 𝜑 → ⟨“ 𝑋 ”⟩ ∈ Word 𝐴 )
3 ral0 𝑛 ∈ ∅ ( ⟨“ 𝑋 ”⟩ ‘ ( 𝑛 − 1 ) ) < ( ⟨“ 𝑋 ”⟩ ‘ 𝑛 )
4 s1dm dom ⟨“ 𝑋 ”⟩ = { 0 }
5 4 difeq1i ( dom ⟨“ 𝑋 ”⟩ ∖ { 0 } ) = ( { 0 } ∖ { 0 } )
6 difid ( { 0 } ∖ { 0 } ) = ∅
7 5 6 eqtri ( dom ⟨“ 𝑋 ”⟩ ∖ { 0 } ) = ∅
8 7 raleqi ( ∀ 𝑛 ∈ ( dom ⟨“ 𝑋 ”⟩ ∖ { 0 } ) ( ⟨“ 𝑋 ”⟩ ‘ ( 𝑛 − 1 ) ) < ( ⟨“ 𝑋 ”⟩ ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ∅ ( ⟨“ 𝑋 ”⟩ ‘ ( 𝑛 − 1 ) ) < ( ⟨“ 𝑋 ”⟩ ‘ 𝑛 ) )
9 3 8 mpbir 𝑛 ∈ ( dom ⟨“ 𝑋 ”⟩ ∖ { 0 } ) ( ⟨“ 𝑋 ”⟩ ‘ ( 𝑛 − 1 ) ) < ( ⟨“ 𝑋 ”⟩ ‘ 𝑛 )
10 ischn ( ⟨“ 𝑋 ”⟩ ∈ ( < Chain 𝐴 ) ↔ ( ⟨“ 𝑋 ”⟩ ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom ⟨“ 𝑋 ”⟩ ∖ { 0 } ) ( ⟨“ 𝑋 ”⟩ ‘ ( 𝑛 − 1 ) ) < ( ⟨“ 𝑋 ”⟩ ‘ 𝑛 ) ) )
11 2 9 10 sylanblrc ( 𝜑 → ⟨“ 𝑋 ”⟩ ∈ ( < Chain 𝐴 ) )