Metamath Proof Explorer


Theorem s1dm

Description: The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020)

Ref Expression
Assertion s1dm dom ⟨“ 𝐴 ”⟩ = { 0 }

Proof

Step Hyp Ref Expression
1 s1cli ⟨“ 𝐴 ”⟩ ∈ Word V
2 wrdf ( ⟨“ 𝐴 ”⟩ ∈ Word V → ⟨“ 𝐴 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) ⟶ V )
3 1 2 ax-mp ⟨“ 𝐴 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) ⟶ V
4 s1len ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1
5 oveq2 ( ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1 → ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) = ( 0 ..^ 1 ) )
6 fzo01 ( 0 ..^ 1 ) = { 0 }
7 5 6 eqtrdi ( ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) = 1 → ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) = { 0 } )
8 4 7 ax-mp ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) = { 0 }
9 8 eqcomi { 0 } = ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) )
10 9 feq2i ( ⟨“ 𝐴 ”⟩ : { 0 } ⟶ V ↔ ⟨“ 𝐴 ”⟩ : ( 0 ..^ ( ♯ ‘ ⟨“ 𝐴 ”⟩ ) ) ⟶ V )
11 3 10 mpbir ⟨“ 𝐴 ”⟩ : { 0 } ⟶ V
12 11 fdmi dom ⟨“ 𝐴 ”⟩ = { 0 }