Description: Alternate version of s1dm , having a shorter proof, but requiring that A is a set. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | s1dmALT | ⊢ ( 𝐴 ∈ 𝑆 → dom 〈“ 𝐴 ”〉 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val | ⊢ ( 𝐴 ∈ 𝑆 → 〈“ 𝐴 ”〉 = { 〈 0 , 𝐴 〉 } ) | |
| 2 | 1 | dmeqd | ⊢ ( 𝐴 ∈ 𝑆 → dom 〈“ 𝐴 ”〉 = dom { 〈 0 , 𝐴 〉 } ) |
| 3 | dmsnopg | ⊢ ( 𝐴 ∈ 𝑆 → dom { 〈 0 , 𝐴 〉 } = { 0 } ) | |
| 4 | 2 3 | eqtrd | ⊢ ( 𝐴 ∈ 𝑆 → dom 〈“ 𝐴 ”〉 = { 0 } ) |