Metamath Proof Explorer


Theorem ischn

Description: Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Assertion ischn ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )

Proof

Step Hyp Ref Expression
1 dmeq ( 𝑐 = 𝐶 → dom 𝑐 = dom 𝐶 )
2 1 difeq1d ( 𝑐 = 𝐶 → ( dom 𝑐 ∖ { 0 } ) = ( dom 𝐶 ∖ { 0 } ) )
3 fveq1 ( 𝑐 = 𝐶 → ( 𝑐 ‘ ( 𝑛 − 1 ) ) = ( 𝐶 ‘ ( 𝑛 − 1 ) ) )
4 fveq1 ( 𝑐 = 𝐶 → ( 𝑐𝑛 ) = ( 𝐶𝑛 ) )
5 3 4 breq12d ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐𝑛 ) ↔ ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
6 2 5 raleqbidv ( 𝑐 = 𝐶 → ( ∀ 𝑛 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐𝑛 ) ↔ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
7 df-chn ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐𝑛 ) }
8 6 7 elrab2 ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )