| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmeq |
⊢ ( 𝑐 = 𝐶 → dom 𝑐 = dom 𝐶 ) |
| 2 |
1
|
difeq1d |
⊢ ( 𝑐 = 𝐶 → ( dom 𝑐 ∖ { 0 } ) = ( dom 𝐶 ∖ { 0 } ) ) |
| 3 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ ( 𝑛 − 1 ) ) = ( 𝐶 ‘ ( 𝑛 − 1 ) ) ) |
| 4 |
|
fveq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 5 |
3 4
|
breq12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐 ‘ 𝑛 ) ↔ ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |
| 6 |
2 5
|
raleqbidv |
⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑛 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |
| 7 |
|
df-chn |
⊢ ( < Chain 𝐴 ) = { 𝑐 ∈ Word 𝐴 ∣ ∀ 𝑛 ∈ ( dom 𝑐 ∖ { 0 } ) ( 𝑐 ‘ ( 𝑛 − 1 ) ) < ( 𝑐 ‘ 𝑛 ) } |
| 8 |
6 7
|
elrab2 |
⊢ ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |