Metamath Proof Explorer


Theorem chnwrd

Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypothesis chnwrd.1 ( 𝜑𝐶 ∈ ( < Chain 𝐴 ) )
Assertion chnwrd ( 𝜑𝐶 ∈ Word 𝐴 )

Proof

Step Hyp Ref Expression
1 chnwrd.1 ( 𝜑𝐶 ∈ ( < Chain 𝐴 ) )
2 ischn ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
3 2 simplbi ( 𝐶 ∈ ( < Chain 𝐴 ) → 𝐶 ∈ Word 𝐴 )
4 1 3 syl ( 𝜑𝐶 ∈ Word 𝐴 )