Metamath Proof Explorer
Description: A chain is an ordered sequence, i.e. a word. (Contributed by Thierry
Arnoux, 19-Jun-2025)
|
|
Ref |
Expression |
|
Hypothesis |
chnwrd.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( < Chain 𝐴 ) ) |
|
Assertion |
chnwrd |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
chnwrd.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( < Chain 𝐴 ) ) |
2 |
|
ischn |
⊢ ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |
3 |
2
|
simplbi |
⊢ ( 𝐶 ∈ ( < Chain 𝐴 ) → 𝐶 ∈ Word 𝐴 ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Word 𝐴 ) |