Step |
Hyp |
Ref |
Expression |
1 |
|
chnwrd.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( < Chain 𝐴 ) ) |
2 |
|
chnltm1.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( dom 𝐶 ∖ { 0 } ) ) |
3 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐶 ‘ ( 𝑛 − 1 ) ) = ( 𝐶 ‘ ( 𝑁 − 1 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑁 ) ) |
5 |
3 4
|
breq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ↔ ( 𝐶 ‘ ( 𝑁 − 1 ) ) < ( 𝐶 ‘ 𝑁 ) ) ) |
6 |
|
ischn |
⊢ ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |
7 |
1 6
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) ) |
8 |
7
|
simprd |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶 ‘ 𝑛 ) ) |
9 |
5 8 2
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑁 − 1 ) ) < ( 𝐶 ‘ 𝑁 ) ) |