Metamath Proof Explorer


Theorem chnltm1

Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnwrd.1 ( 𝜑𝐶 ∈ ( < Chain 𝐴 ) )
chnltm1.2 ( 𝜑𝑁 ∈ ( dom 𝐶 ∖ { 0 } ) )
Assertion chnltm1 ( 𝜑 → ( 𝐶 ‘ ( 𝑁 − 1 ) ) < ( 𝐶𝑁 ) )

Proof

Step Hyp Ref Expression
1 chnwrd.1 ( 𝜑𝐶 ∈ ( < Chain 𝐴 ) )
2 chnltm1.2 ( 𝜑𝑁 ∈ ( dom 𝐶 ∖ { 0 } ) )
3 fvoveq1 ( 𝑛 = 𝑁 → ( 𝐶 ‘ ( 𝑛 − 1 ) ) = ( 𝐶 ‘ ( 𝑁 − 1 ) ) )
4 fveq2 ( 𝑛 = 𝑁 → ( 𝐶𝑛 ) = ( 𝐶𝑁 ) )
5 3 4 breq12d ( 𝑛 = 𝑁 → ( ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ↔ ( 𝐶 ‘ ( 𝑁 − 1 ) ) < ( 𝐶𝑁 ) ) )
6 ischn ( 𝐶 ∈ ( < Chain 𝐴 ) ↔ ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
7 1 6 sylib ( 𝜑 → ( 𝐶 ∈ Word 𝐴 ∧ ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) ) )
8 7 simprd ( 𝜑 → ∀ 𝑛 ∈ ( dom 𝐶 ∖ { 0 } ) ( 𝐶 ‘ ( 𝑛 − 1 ) ) < ( 𝐶𝑛 ) )
9 5 8 2 rspcdva ( 𝜑 → ( 𝐶 ‘ ( 𝑁 − 1 ) ) < ( 𝐶𝑁 ) )