Metamath Proof Explorer


Theorem chnltm1

Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnwrd.1
|- ( ph -> C e. ( .< Chain A ) )
chnltm1.2
|- ( ph -> N e. ( dom C \ { 0 } ) )
Assertion chnltm1
|- ( ph -> ( C ` ( N - 1 ) ) .< ( C ` N ) )

Proof

Step Hyp Ref Expression
1 chnwrd.1
 |-  ( ph -> C e. ( .< Chain A ) )
2 chnltm1.2
 |-  ( ph -> N e. ( dom C \ { 0 } ) )
3 fvoveq1
 |-  ( n = N -> ( C ` ( n - 1 ) ) = ( C ` ( N - 1 ) ) )
4 fveq2
 |-  ( n = N -> ( C ` n ) = ( C ` N ) )
5 3 4 breq12d
 |-  ( n = N -> ( ( C ` ( n - 1 ) ) .< ( C ` n ) <-> ( C ` ( N - 1 ) ) .< ( C ` N ) ) )
6 ischn
 |-  ( C e. ( .< Chain A ) <-> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) )
7 1 6 sylib
 |-  ( ph -> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) )
8 7 simprd
 |-  ( ph -> A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) )
9 5 8 2 rspcdva
 |-  ( ph -> ( C ` ( N - 1 ) ) .< ( C ` N ) )