Step |
Hyp |
Ref |
Expression |
1 |
|
chnwrd.1 |
|- ( ph -> C e. ( .< Chain A ) ) |
2 |
|
chnltm1.2 |
|- ( ph -> N e. ( dom C \ { 0 } ) ) |
3 |
|
fvoveq1 |
|- ( n = N -> ( C ` ( n - 1 ) ) = ( C ` ( N - 1 ) ) ) |
4 |
|
fveq2 |
|- ( n = N -> ( C ` n ) = ( C ` N ) ) |
5 |
3 4
|
breq12d |
|- ( n = N -> ( ( C ` ( n - 1 ) ) .< ( C ` n ) <-> ( C ` ( N - 1 ) ) .< ( C ` N ) ) ) |
6 |
|
ischn |
|- ( C e. ( .< Chain A ) <-> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) ) |
7 |
1 6
|
sylib |
|- ( ph -> ( C e. Word A /\ A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) ) |
8 |
7
|
simprd |
|- ( ph -> A. n e. ( dom C \ { 0 } ) ( C ` ( n - 1 ) ) .< ( C ` n ) ) |
9 |
5 8 2
|
rspcdva |
|- ( ph -> ( C ` ( N - 1 ) ) .< ( C ` N ) ) |