Metamath Proof Explorer


Theorem chnltm1

Description: Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnwrd.1 φ C Chain A < ˙
chnltm1.2 φ N dom C 0
Assertion chnltm1 φ C N 1 < ˙ C N

Proof

Step Hyp Ref Expression
1 chnwrd.1 φ C Chain A < ˙
2 chnltm1.2 φ N dom C 0
3 fvoveq1 n = N C n 1 = C N 1
4 fveq2 n = N C n = C N
5 3 4 breq12d n = N C n 1 < ˙ C n C N 1 < ˙ C N
6 ischn C Chain A < ˙ C Word A n dom C 0 C n 1 < ˙ C n
7 1 6 sylib φ C Word A n dom C 0 C n 1 < ˙ C n
8 7 simprd φ n dom C 0 C n 1 < ˙ C n
9 5 8 2 rspcdva φ C N 1 < ˙ C N