Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Extensible Structures
Chains
chnltm1
Next ⟩
pfxchn
Metamath Proof Explorer
Ascii
Unicode
Theorem
chnltm1
Description:
Basic property of a chain.
(Contributed by
Thierry Arnoux
, 19-Jun-2025)
Ref
Expression
Hypotheses
chnwrd.1
⊢
φ
→
C
∈
Chain
A
<
˙
chnltm1.2
⊢
φ
→
N
∈
dom
⁡
C
∖
0
Assertion
chnltm1
⊢
φ
→
C
⁡
N
−
1
<
˙
C
⁡
N
Proof
Step
Hyp
Ref
Expression
1
chnwrd.1
⊢
φ
→
C
∈
Chain
A
<
˙
2
chnltm1.2
⊢
φ
→
N
∈
dom
⁡
C
∖
0
3
fvoveq1
⊢
n
=
N
→
C
⁡
n
−
1
=
C
⁡
N
−
1
4
fveq2
⊢
n
=
N
→
C
⁡
n
=
C
⁡
N
5
3
4
breq12d
⊢
n
=
N
→
C
⁡
n
−
1
<
˙
C
⁡
n
↔
C
⁡
N
−
1
<
˙
C
⁡
N
6
ischn
⊢
C
∈
Chain
A
<
˙
↔
C
∈
Word
A
∧
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n
7
1
6
sylib
⊢
φ
→
C
∈
Word
A
∧
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n
8
7
simprd
⊢
φ
→
∀
n
∈
dom
⁡
C
∖
0
C
⁡
n
−
1
<
˙
C
⁡
n
9
5
8
2
rspcdva
⊢
φ
→
C
⁡
N
−
1
<
˙
C
⁡
N