Metamath Proof Explorer


Theorem pfxchn

Description: A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025)

Ref Expression
Hypotheses chnwrd.1 φ C Chain A < ˙
pfxchn.2 φ L 0 C
Assertion pfxchn φ C prefix L Chain A < ˙

Proof

Step Hyp Ref Expression
1 chnwrd.1 φ C Chain A < ˙
2 pfxchn.2 φ L 0 C
3 1 chnwrd φ C Word A
4 pfxcl C Word A C prefix L Word A
5 3 4 syl φ C prefix L Word A
6 1 adantr φ n dom C prefix L 0 C Chain A < ˙
7 2 adantr φ n dom C prefix L 0 L 0 C
8 elfzuz3 L 0 C C L
9 fzoss2 C L 0 ..^ L 0 ..^ C
10 7 8 9 3syl φ n dom C prefix L 0 0 ..^ L 0 ..^ C
11 simpr φ n dom C prefix L 0 n dom C prefix L 0
12 11 eldifad φ n dom C prefix L 0 n dom C prefix L
13 3 adantr φ n dom C prefix L 0 C Word A
14 pfxlen C Word A L 0 C C prefix L = L
15 13 7 14 syl2anc φ n dom C prefix L 0 C prefix L = L
16 15 eqcomd φ n dom C prefix L 0 L = C prefix L
17 5 adantr φ n dom C prefix L 0 C prefix L Word A
18 16 17 wrdfd φ n dom C prefix L 0 C prefix L : 0 ..^ L A
19 18 fdmd φ n dom C prefix L 0 dom C prefix L = 0 ..^ L
20 12 19 eleqtrd φ n dom C prefix L 0 n 0 ..^ L
21 10 20 sseldd φ n dom C prefix L 0 n 0 ..^ C
22 eqidd φ n dom C prefix L 0 C = C
23 22 13 wrdfd φ n dom C prefix L 0 C : 0 ..^ C A
24 23 fdmd φ n dom C prefix L 0 dom C = 0 ..^ C
25 21 24 eleqtrrd φ n dom C prefix L 0 n dom C
26 eldifsni n dom C prefix L 0 n 0
27 11 26 syl φ n dom C prefix L 0 n 0
28 25 27 eldifsnd φ n dom C prefix L 0 n dom C 0
29 6 28 chnltm1 φ n dom C prefix L 0 C n 1 < ˙ C n
30 7 elfzelzd φ n dom C prefix L 0 L
31 fzossrbm1 L 0 ..^ L 1 0 ..^ L
32 30 31 syl φ n dom C prefix L 0 0 ..^ L 1 0 ..^ L
33 fzom1ne1 n 0 ..^ L n 0 n 1 0 ..^ L 1
34 20 27 33 syl2anc φ n dom C prefix L 0 n 1 0 ..^ L 1
35 32 34 sseldd φ n dom C prefix L 0 n 1 0 ..^ L
36 pfxfv C Word A L 0 C n 1 0 ..^ L C prefix L n 1 = C n 1
37 13 7 35 36 syl3anc φ n dom C prefix L 0 C prefix L n 1 = C n 1
38 pfxfv C Word A L 0 C n 0 ..^ L C prefix L n = C n
39 13 7 20 38 syl3anc φ n dom C prefix L 0 C prefix L n = C n
40 29 37 39 3brtr4d φ n dom C prefix L 0 C prefix L n 1 < ˙ C prefix L n
41 40 ralrimiva φ n dom C prefix L 0 C prefix L n 1 < ˙ C prefix L n
42 ischn C prefix L Chain A < ˙ C prefix L Word A n dom C prefix L 0 C prefix L n 1 < ˙ C prefix L n
43 5 41 42 sylanbrc φ C prefix L Chain A < ˙