Metamath Proof Explorer


Theorem fzom1ne1

Description: Elementhood in a half-open interval, except the lower bound, shifted by one. (Contributed by Thierry Arnoux, 1-Jan-2024)

Ref Expression
Assertion fzom1ne1 K M ..^ N K M K 1 M ..^ N 1

Proof

Step Hyp Ref Expression
1 fzone1 K M ..^ N K M K M + 1 ..^ N
2 1z 1
3 fzosubel K M + 1 ..^ N 1 K 1 M + 1 - 1 ..^ N 1
4 1 2 3 sylancl K M ..^ N K M K 1 M + 1 - 1 ..^ N 1
5 elfzoel1 K M ..^ N M
6 5 adantr K M ..^ N K M M
7 6 zcnd K M ..^ N K M M
8 1cnd K M ..^ N K M 1
9 7 8 pncand K M ..^ N K M M + 1 - 1 = M
10 9 oveq1d K M ..^ N K M M + 1 - 1 ..^ N 1 = M ..^ N 1
11 4 10 eleqtrd K M ..^ N K M K 1 M ..^ N 1