Metamath Proof Explorer


Theorem fzone1

Description: Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024)

Ref Expression
Assertion fzone1 K M ..^ N K M K M + 1 ..^ N

Proof

Step Hyp Ref Expression
1 elfzofz K M ..^ N K M N
2 1 adantr K M ..^ N K M K M N
3 elfzlmr K M N K = M K M + 1 ..^ N K = N
4 2 3 syl K M ..^ N K M K = M K M + 1 ..^ N K = N
5 df-3or K = M K M + 1 ..^ N K = N K = M K M + 1 ..^ N K = N
6 4 5 sylib K M ..^ N K M K = M K M + 1 ..^ N K = N
7 2 elfzelzd K M ..^ N K M K
8 7 zred K M ..^ N K M K
9 elfzolt2 K M ..^ N K < N
10 9 adantr K M ..^ N K M K < N
11 8 10 ltned K M ..^ N K M K N
12 11 neneqd K M ..^ N K M ¬ K = N
13 6 12 olcnd K M ..^ N K M K = M K M + 1 ..^ N
14 simpr K M ..^ N K M K M
15 14 neneqd K M ..^ N K M ¬ K = M
16 13 15 orcnd K M ..^ N K M K M + 1 ..^ N