Metamath Proof Explorer


Theorem fzone1

Description: Elementhood in a half-open interval, except its lower bound. (Contributed by Thierry Arnoux, 1-Jan-2024)

Ref Expression
Assertion fzone1
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) )

Proof

Step Hyp Ref Expression
1 elfzofz
 |-  ( K e. ( M ..^ N ) -> K e. ( M ... N ) )
2 1 adantr
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( M ... N ) )
3 elfzlmr
 |-  ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) )
4 2 3 syl
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) )
5 df-3or
 |-  ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) <-> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) )
6 4 5 sylib
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) )
7 elfzelz
 |-  ( K e. ( M ... N ) -> K e. ZZ )
8 2 7 syl
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ZZ )
9 8 zred
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. RR )
10 elfzolt2
 |-  ( K e. ( M ..^ N ) -> K < N )
11 10 adantr
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K < N )
12 9 11 ltned
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= N )
13 12 neneqd
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = N )
14 6 13 olcnd
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) )
15 simpr
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= M )
16 15 neneqd
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = M )
17 14 16 orcnd
 |-  ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) )