| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzofz |
|- ( K e. ( M ..^ N ) -> K e. ( M ... N ) ) |
| 2 |
1
|
adantr |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( M ... N ) ) |
| 3 |
|
elfzlmr |
|- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
| 4 |
2 3
|
syl |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
| 5 |
|
df-3or |
|- ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) <-> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) ) |
| 6 |
4 5
|
sylib |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) \/ K = N ) ) |
| 7 |
2
|
elfzelzd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ZZ ) |
| 8 |
7
|
zred |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. RR ) |
| 9 |
|
elfzolt2 |
|- ( K e. ( M ..^ N ) -> K < N ) |
| 10 |
9
|
adantr |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K < N ) |
| 11 |
8 10
|
ltned |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= N ) |
| 12 |
11
|
neneqd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = N ) |
| 13 |
6 12
|
olcnd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) ) ) |
| 14 |
|
simpr |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K =/= M ) |
| 15 |
14
|
neneqd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> -. K = M ) |
| 16 |
13 15
|
orcnd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) ) |