Step |
Hyp |
Ref |
Expression |
1 |
|
fzone1 |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ..^ N ) ) |
2 |
|
1z |
|- 1 e. ZZ |
3 |
|
fzosubel |
|- ( ( K e. ( ( M + 1 ) ..^ N ) /\ 1 e. ZZ ) -> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ..^ ( N - 1 ) ) ) |
4 |
1 2 3
|
sylancl |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ..^ ( N - 1 ) ) ) |
5 |
|
elfzoel1 |
|- ( K e. ( M ..^ N ) -> M e. ZZ ) |
6 |
5
|
adantr |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> M e. ZZ ) |
7 |
6
|
zcnd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> M e. CC ) |
8 |
|
1cnd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> 1 e. CC ) |
9 |
7 8
|
pncand |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( ( M + 1 ) - 1 ) = M ) |
10 |
9
|
oveq1d |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( ( ( M + 1 ) - 1 ) ..^ ( N - 1 ) ) = ( M ..^ ( N - 1 ) ) ) |
11 |
4 10
|
eleqtrd |
|- ( ( K e. ( M ..^ N ) /\ K =/= M ) -> ( K - 1 ) e. ( M ..^ ( N - 1 ) ) ) |