Step |
Hyp |
Ref |
Expression |
1 |
|
f1o0 |
|- (/) : (/) -1-1-onto-> (/) |
2 |
|
eqidd |
|- ( A = (/) -> (/) = (/) ) |
3 |
|
dm0 |
|- dom (/) = (/) |
4 |
3
|
a1i |
|- ( A = (/) -> dom (/) = (/) ) |
5 |
|
id |
|- ( A = (/) -> A = (/) ) |
6 |
2 4 5
|
f1oeq123d |
|- ( A = (/) -> ( (/) : dom (/) -1-1-onto-> A <-> (/) : (/) -1-1-onto-> (/) ) ) |
7 |
1 6
|
mpbiri |
|- ( A = (/) -> (/) : dom (/) -1-1-onto-> A ) |
8 |
|
fveq2 |
|- ( A = (/) -> ( # ` A ) = ( # ` (/) ) ) |
9 |
|
hash0 |
|- ( # ` (/) ) = 0 |
10 |
8 9
|
eqtrdi |
|- ( A = (/) -> ( # ` A ) = 0 ) |
11 |
10
|
oveq1d |
|- ( A = (/) -> ( ( # ` A ) + 1 ) = ( 0 + 1 ) ) |
12 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
13 |
11 12
|
eqtrdi |
|- ( A = (/) -> ( ( # ` A ) + 1 ) = 1 ) |
14 |
13
|
oveq2d |
|- ( A = (/) -> ( 1 ..^ ( ( # ` A ) + 1 ) ) = ( 1 ..^ 1 ) ) |
15 |
|
fzo0 |
|- ( 1 ..^ 1 ) = (/) |
16 |
14 15
|
eqtrdi |
|- ( A = (/) -> ( 1 ..^ ( ( # ` A ) + 1 ) ) = (/) ) |
17 |
4 16
|
eqtr4d |
|- ( A = (/) -> dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) |
18 |
17
|
olcd |
|- ( A = (/) -> ( dom (/) = NN \/ dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) |
19 |
7 18
|
jca |
|- ( A = (/) -> ( (/) : dom (/) -1-1-onto-> A /\ ( dom (/) = NN \/ dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
20 |
|
0ex |
|- (/) e. _V |
21 |
|
id |
|- ( f = (/) -> f = (/) ) |
22 |
|
dmeq |
|- ( f = (/) -> dom f = dom (/) ) |
23 |
|
eqidd |
|- ( f = (/) -> A = A ) |
24 |
21 22 23
|
f1oeq123d |
|- ( f = (/) -> ( f : dom f -1-1-onto-> A <-> (/) : dom (/) -1-1-onto-> A ) ) |
25 |
22
|
eqeq1d |
|- ( f = (/) -> ( dom f = NN <-> dom (/) = NN ) ) |
26 |
22
|
eqeq1d |
|- ( f = (/) -> ( dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) <-> dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) |
27 |
25 26
|
orbi12d |
|- ( f = (/) -> ( ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) <-> ( dom (/) = NN \/ dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
28 |
24 27
|
anbi12d |
|- ( f = (/) -> ( ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) <-> ( (/) : dom (/) -1-1-onto-> A /\ ( dom (/) = NN \/ dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) ) |
29 |
20 28
|
spcev |
|- ( ( (/) : dom (/) -1-1-onto-> A /\ ( dom (/) = NN \/ dom (/) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
30 |
19 29
|
syl |
|- ( A = (/) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
31 |
30
|
adantl |
|- ( ( ( A ~<_ _om /\ A e. Fin ) /\ A = (/) ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
32 |
|
f1odm |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> dom f = ( 1 ... ( # ` A ) ) ) |
33 |
32
|
f1oeq2d |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( f : dom f -1-1-onto-> A <-> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) |
34 |
33
|
ibir |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : dom f -1-1-onto-> A ) |
35 |
34
|
adantl |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> f : dom f -1-1-onto-> A ) |
36 |
32
|
adantl |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> dom f = ( 1 ... ( # ` A ) ) ) |
37 |
|
simpl |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. NN ) |
38 |
37
|
nnzd |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( # ` A ) e. ZZ ) |
39 |
|
fzval3 |
|- ( ( # ` A ) e. ZZ -> ( 1 ... ( # ` A ) ) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) |
40 |
38 39
|
syl |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( 1 ... ( # ` A ) ) = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) |
41 |
36 40
|
eqtrd |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) |
42 |
41
|
olcd |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) |
43 |
35 42
|
jca |
|- ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
44 |
43
|
ex |
|- ( ( # ` A ) e. NN -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) ) |
45 |
44
|
eximdv |
|- ( ( # ` A ) e. NN -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) ) |
46 |
45
|
imp |
|- ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
47 |
46
|
adantl |
|- ( ( ( A ~<_ _om /\ A e. Fin ) /\ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
48 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
49 |
48
|
adantl |
|- ( ( A ~<_ _om /\ A e. Fin ) -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
50 |
31 47 49
|
mpjaodan |
|- ( ( A ~<_ _om /\ A e. Fin ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
51 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
52 |
51
|
notbii |
|- ( -. A e. Fin <-> -. A ~< _om ) |
53 |
52
|
biimpi |
|- ( -. A e. Fin -> -. A ~< _om ) |
54 |
53
|
anim2i |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> ( A ~<_ _om /\ -. A ~< _om ) ) |
55 |
|
bren2 |
|- ( A ~~ _om <-> ( A ~<_ _om /\ -. A ~< _om ) ) |
56 |
54 55
|
sylibr |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> A ~~ _om ) |
57 |
|
nnenom |
|- NN ~~ _om |
58 |
57
|
ensymi |
|- _om ~~ NN |
59 |
|
entr |
|- ( ( A ~~ _om /\ _om ~~ NN ) -> A ~~ NN ) |
60 |
56 58 59
|
sylancl |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> A ~~ NN ) |
61 |
|
bren |
|- ( A ~~ NN <-> E. g g : A -1-1-onto-> NN ) |
62 |
60 61
|
sylib |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> E. g g : A -1-1-onto-> NN ) |
63 |
|
f1oexbi |
|- ( E. g g : A -1-1-onto-> NN <-> E. f f : NN -1-1-onto-> A ) |
64 |
62 63
|
sylib |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> E. f f : NN -1-1-onto-> A ) |
65 |
|
f1odm |
|- ( f : NN -1-1-onto-> A -> dom f = NN ) |
66 |
65
|
f1oeq2d |
|- ( f : NN -1-1-onto-> A -> ( f : dom f -1-1-onto-> A <-> f : NN -1-1-onto-> A ) ) |
67 |
66
|
ibir |
|- ( f : NN -1-1-onto-> A -> f : dom f -1-1-onto-> A ) |
68 |
65
|
orcd |
|- ( f : NN -1-1-onto-> A -> ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) |
69 |
67 68
|
jca |
|- ( f : NN -1-1-onto-> A -> ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
70 |
69
|
eximi |
|- ( E. f f : NN -1-1-onto-> A -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
71 |
64 70
|
syl |
|- ( ( A ~<_ _om /\ -. A e. Fin ) -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |
72 |
50 71
|
pm2.61dan |
|- ( A ~<_ _om -> E. f ( f : dom f -1-1-onto-> A /\ ( dom f = NN \/ dom f = ( 1 ..^ ( ( # ` A ) + 1 ) ) ) ) ) |