Metamath Proof Explorer


Theorem fz1nnct

Description: NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nnct
|- ( ( A = NN \/ A = ( 1 ..^ M ) ) -> A ~<_ _om )

Proof

Step Hyp Ref Expression
1 nnct
 |-  NN ~<_ _om
2 breq1
 |-  ( A = NN -> ( A ~<_ _om <-> NN ~<_ _om ) )
3 1 2 mpbiri
 |-  ( A = NN -> A ~<_ _om )
4 fzofi
 |-  ( 1 ..^ M ) e. Fin
5 fict
 |-  ( ( 1 ..^ M ) e. Fin -> ( 1 ..^ M ) ~<_ _om )
6 4 5 ax-mp
 |-  ( 1 ..^ M ) ~<_ _om
7 breq1
 |-  ( A = ( 1 ..^ M ) -> ( A ~<_ _om <-> ( 1 ..^ M ) ~<_ _om ) )
8 6 7 mpbiri
 |-  ( A = ( 1 ..^ M ) -> A ~<_ _om )
9 3 8 jaoi
 |-  ( ( A = NN \/ A = ( 1 ..^ M ) ) -> A ~<_ _om )