Metamath Proof Explorer


Theorem fz1nntr

Description: NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nntr
|- ( ( ( A = NN \/ A = ( 1 ..^ M ) ) /\ N e. A ) -> ( 1 ..^ N ) C_ A )

Proof

Step Hyp Ref Expression
1 fzossnn
 |-  ( 1 ..^ N ) C_ NN
2 sseq2
 |-  ( A = NN -> ( ( 1 ..^ N ) C_ A <-> ( 1 ..^ N ) C_ NN ) )
3 1 2 mpbiri
 |-  ( A = NN -> ( 1 ..^ N ) C_ A )
4 3 adantr
 |-  ( ( A = NN /\ N e. A ) -> ( 1 ..^ N ) C_ A )
5 elfzouz2
 |-  ( N e. ( 1 ..^ M ) -> M e. ( ZZ>= ` N ) )
6 fzoss2
 |-  ( M e. ( ZZ>= ` N ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) )
7 5 6 syl
 |-  ( N e. ( 1 ..^ M ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) )
8 eleq2
 |-  ( A = ( 1 ..^ M ) -> ( N e. A <-> N e. ( 1 ..^ M ) ) )
9 sseq2
 |-  ( A = ( 1 ..^ M ) -> ( ( 1 ..^ N ) C_ A <-> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) )
10 8 9 imbi12d
 |-  ( A = ( 1 ..^ M ) -> ( ( N e. A -> ( 1 ..^ N ) C_ A ) <-> ( N e. ( 1 ..^ M ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) ) )
11 7 10 mpbiri
 |-  ( A = ( 1 ..^ M ) -> ( N e. A -> ( 1 ..^ N ) C_ A ) )
12 11 imp
 |-  ( ( A = ( 1 ..^ M ) /\ N e. A ) -> ( 1 ..^ N ) C_ A )
13 4 12 jaoian
 |-  ( ( ( A = NN \/ A = ( 1 ..^ M ) ) /\ N e. A ) -> ( 1 ..^ N ) C_ A )