Step |
Hyp |
Ref |
Expression |
1 |
|
fzossnn |
|- ( 1 ..^ N ) C_ NN |
2 |
|
sseq2 |
|- ( A = NN -> ( ( 1 ..^ N ) C_ A <-> ( 1 ..^ N ) C_ NN ) ) |
3 |
1 2
|
mpbiri |
|- ( A = NN -> ( 1 ..^ N ) C_ A ) |
4 |
3
|
adantr |
|- ( ( A = NN /\ N e. A ) -> ( 1 ..^ N ) C_ A ) |
5 |
|
elfzouz2 |
|- ( N e. ( 1 ..^ M ) -> M e. ( ZZ>= ` N ) ) |
6 |
|
fzoss2 |
|- ( M e. ( ZZ>= ` N ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) |
7 |
5 6
|
syl |
|- ( N e. ( 1 ..^ M ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) |
8 |
|
eleq2 |
|- ( A = ( 1 ..^ M ) -> ( N e. A <-> N e. ( 1 ..^ M ) ) ) |
9 |
|
sseq2 |
|- ( A = ( 1 ..^ M ) -> ( ( 1 ..^ N ) C_ A <-> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) ) |
10 |
8 9
|
imbi12d |
|- ( A = ( 1 ..^ M ) -> ( ( N e. A -> ( 1 ..^ N ) C_ A ) <-> ( N e. ( 1 ..^ M ) -> ( 1 ..^ N ) C_ ( 1 ..^ M ) ) ) ) |
11 |
7 10
|
mpbiri |
|- ( A = ( 1 ..^ M ) -> ( N e. A -> ( 1 ..^ N ) C_ A ) ) |
12 |
11
|
imp |
|- ( ( A = ( 1 ..^ M ) /\ N e. A ) -> ( 1 ..^ N ) C_ A ) |
13 |
4 12
|
jaoian |
|- ( ( ( A = NN \/ A = ( 1 ..^ M ) ) /\ N e. A ) -> ( 1 ..^ N ) C_ A ) |