Metamath Proof Explorer


Theorem fz1nntr

Description: NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nntr A = A = 1 ..^ M N A 1 ..^ N A

Proof

Step Hyp Ref Expression
1 fzossnn 1 ..^ N
2 sseq2 A = 1 ..^ N A 1 ..^ N
3 1 2 mpbiri A = 1 ..^ N A
4 3 adantr A = N A 1 ..^ N A
5 elfzouz2 N 1 ..^ M M N
6 fzoss2 M N 1 ..^ N 1 ..^ M
7 5 6 syl N 1 ..^ M 1 ..^ N 1 ..^ M
8 eleq2 A = 1 ..^ M N A N 1 ..^ M
9 sseq2 A = 1 ..^ M 1 ..^ N A 1 ..^ N 1 ..^ M
10 8 9 imbi12d A = 1 ..^ M N A 1 ..^ N A N 1 ..^ M 1 ..^ N 1 ..^ M
11 7 10 mpbiri A = 1 ..^ M N A 1 ..^ N A
12 11 imp A = 1 ..^ M N A 1 ..^ N A
13 4 12 jaoian A = A = 1 ..^ M N A 1 ..^ N A