Metamath Proof Explorer


Theorem fz1nntr

Description: NN and integer ranges starting from 1 are a transitive family of set. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nntr ( ( ( 𝐴 = ℕ ∨ 𝐴 = ( 1 ..^ 𝑀 ) ) ∧ 𝑁𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 fzossnn ( 1 ..^ 𝑁 ) ⊆ ℕ
2 sseq2 ( 𝐴 = ℕ → ( ( 1 ..^ 𝑁 ) ⊆ 𝐴 ↔ ( 1 ..^ 𝑁 ) ⊆ ℕ ) )
3 1 2 mpbiri ( 𝐴 = ℕ → ( 1 ..^ 𝑁 ) ⊆ 𝐴 )
4 3 adantr ( ( 𝐴 = ℕ ∧ 𝑁𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 )
5 elfzouz2 ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ𝑁 ) )
6 fzoss2 ( 𝑀 ∈ ( ℤ𝑁 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) )
7 5 6 syl ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) )
8 eleq2 ( 𝐴 = ( 1 ..^ 𝑀 ) → ( 𝑁𝐴𝑁 ∈ ( 1 ..^ 𝑀 ) ) )
9 sseq2 ( 𝐴 = ( 1 ..^ 𝑀 ) → ( ( 1 ..^ 𝑁 ) ⊆ 𝐴 ↔ ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) )
10 8 9 imbi12d ( 𝐴 = ( 1 ..^ 𝑀 ) → ( ( 𝑁𝐴 → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) ↔ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) ) )
11 7 10 mpbiri ( 𝐴 = ( 1 ..^ 𝑀 ) → ( 𝑁𝐴 → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) )
12 11 imp ( ( 𝐴 = ( 1 ..^ 𝑀 ) ∧ 𝑁𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 )
13 4 12 jaoian ( ( ( 𝐴 = ℕ ∨ 𝐴 = ( 1 ..^ 𝑀 ) ) ∧ 𝑁𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 )