Step |
Hyp |
Ref |
Expression |
1 |
|
fzossnn |
⊢ ( 1 ..^ 𝑁 ) ⊆ ℕ |
2 |
|
sseq2 |
⊢ ( 𝐴 = ℕ → ( ( 1 ..^ 𝑁 ) ⊆ 𝐴 ↔ ( 1 ..^ 𝑁 ) ⊆ ℕ ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝐴 = ℕ → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 = ℕ ∧ 𝑁 ∈ 𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) |
5 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
6 |
|
fzoss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) |
8 |
|
eleq2 |
⊢ ( 𝐴 = ( 1 ..^ 𝑀 ) → ( 𝑁 ∈ 𝐴 ↔ 𝑁 ∈ ( 1 ..^ 𝑀 ) ) ) |
9 |
|
sseq2 |
⊢ ( 𝐴 = ( 1 ..^ 𝑀 ) → ( ( 1 ..^ 𝑁 ) ⊆ 𝐴 ↔ ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) ) |
10 |
8 9
|
imbi12d |
⊢ ( 𝐴 = ( 1 ..^ 𝑀 ) → ( ( 𝑁 ∈ 𝐴 → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) ↔ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 1 ..^ 𝑁 ) ⊆ ( 1 ..^ 𝑀 ) ) ) ) |
11 |
7 10
|
mpbiri |
⊢ ( 𝐴 = ( 1 ..^ 𝑀 ) → ( 𝑁 ∈ 𝐴 → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) ) |
12 |
11
|
imp |
⊢ ( ( 𝐴 = ( 1 ..^ 𝑀 ) ∧ 𝑁 ∈ 𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) |
13 |
4 12
|
jaoian |
⊢ ( ( ( 𝐴 = ℕ ∨ 𝐴 = ( 1 ..^ 𝑀 ) ) ∧ 𝑁 ∈ 𝐴 ) → ( 1 ..^ 𝑁 ) ⊆ 𝐴 ) |