Metamath Proof Explorer


Theorem fz1nnct

Description: NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nnct A = A = 1 ..^ M A ω

Proof

Step Hyp Ref Expression
1 nnct ω
2 breq1 A = A ω ω
3 1 2 mpbiri A = A ω
4 fzofi 1 ..^ M Fin
5 fict 1 ..^ M Fin 1 ..^ M ω
6 4 5 ax-mp 1 ..^ M ω
7 breq1 A = 1 ..^ M A ω 1 ..^ M ω
8 6 7 mpbiri A = 1 ..^ M A ω
9 3 8 jaoi A = A = 1 ..^ M A ω