Metamath Proof Explorer


Theorem fz1nnct

Description: NN and integer ranges starting from 1 are countable. (Contributed by Thierry Arnoux, 25-Jul-2020)

Ref Expression
Assertion fz1nnct ( ( 𝐴 = ℕ ∨ 𝐴 = ( 1 ..^ 𝑀 ) ) → 𝐴 ≼ ω )

Proof

Step Hyp Ref Expression
1 nnct ℕ ≼ ω
2 breq1 ( 𝐴 = ℕ → ( 𝐴 ≼ ω ↔ ℕ ≼ ω ) )
3 1 2 mpbiri ( 𝐴 = ℕ → 𝐴 ≼ ω )
4 fzofi ( 1 ..^ 𝑀 ) ∈ Fin
5 fict ( ( 1 ..^ 𝑀 ) ∈ Fin → ( 1 ..^ 𝑀 ) ≼ ω )
6 4 5 ax-mp ( 1 ..^ 𝑀 ) ≼ ω
7 breq1 ( 𝐴 = ( 1 ..^ 𝑀 ) → ( 𝐴 ≼ ω ↔ ( 1 ..^ 𝑀 ) ≼ ω ) )
8 6 7 mpbiri ( 𝐴 = ( 1 ..^ 𝑀 ) → 𝐴 ≼ ω )
9 3 8 jaoi ( ( 𝐴 = ℕ ∨ 𝐴 = ( 1 ..^ 𝑀 ) ) → 𝐴 ≼ ω )