Step |
Hyp |
Ref |
Expression |
1 |
|
iundisj2cnt.0 |
|- F/_ n B |
2 |
|
iundisj2cnt.1 |
|- ( n = k -> A = B ) |
3 |
|
iundisj2cnt.2 |
|- ( ph -> ( N = NN \/ N = ( 1 ..^ M ) ) ) |
4 |
|
nfcv |
|- F/_ k A |
5 |
4 1 2
|
iundisj2f |
|- Disj_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B ) |
6 |
|
disjeq1 |
|- ( N = NN -> ( Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) <-> Disj_ n e. NN ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |
7 |
5 6
|
mpbiri |
|- ( N = NN -> Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
8 |
1 2
|
iundisj2fi |
|- Disj_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B ) |
9 |
|
disjeq1 |
|- ( N = ( 1 ..^ M ) -> ( Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) <-> Disj_ n e. ( 1 ..^ M ) ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |
10 |
8 9
|
mpbiri |
|- ( N = ( 1 ..^ M ) -> Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
11 |
7 10
|
jaoi |
|- ( ( N = NN \/ N = ( 1 ..^ M ) ) -> Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
12 |
3 11
|
syl |
|- ( ph -> Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |