Metamath Proof Explorer


Theorem iundisj2cnt

Description: A countable disjoint union is disjoint. Cf. iundisj2 . (Contributed by Thierry Arnoux, 16-Feb-2017)

Ref Expression
Hypotheses iundisj2cnt.0 _ n B
iundisj2cnt.1 n = k A = B
iundisj2cnt.2 φ N = N = 1 ..^ M
Assertion iundisj2cnt φ Disj n N A k 1 ..^ n B

Proof

Step Hyp Ref Expression
1 iundisj2cnt.0 _ n B
2 iundisj2cnt.1 n = k A = B
3 iundisj2cnt.2 φ N = N = 1 ..^ M
4 nfcv _ k A
5 4 1 2 iundisj2f Disj n A k 1 ..^ n B
6 disjeq1 N = Disj n N A k 1 ..^ n B Disj n A k 1 ..^ n B
7 5 6 mpbiri N = Disj n N A k 1 ..^ n B
8 1 2 iundisj2fi Disj n 1 ..^ M A k 1 ..^ n B
9 disjeq1 N = 1 ..^ M Disj n N A k 1 ..^ n B Disj n 1 ..^ M A k 1 ..^ n B
10 8 9 mpbiri N = 1 ..^ M Disj n N A k 1 ..^ n B
11 7 10 jaoi N = N = 1 ..^ M Disj n N A k 1 ..^ n B
12 3 11 syl φ Disj n N A k 1 ..^ n B