Metamath Proof Explorer


Theorem iundisj2cnt

Description: A countable disjoint union is disjoint. Cf. iundisj2 . (Contributed by Thierry Arnoux, 16-Feb-2017)

Ref Expression
Hypotheses iundisj2cnt.0 _nB
iundisj2cnt.1 n=kA=B
iundisj2cnt.2 φN=N=1..^M
Assertion iundisj2cnt φDisjnNAk1..^nB

Proof

Step Hyp Ref Expression
1 iundisj2cnt.0 _nB
2 iundisj2cnt.1 n=kA=B
3 iundisj2cnt.2 φN=N=1..^M
4 nfcv _kA
5 4 1 2 iundisj2f DisjnAk1..^nB
6 disjeq1 N=DisjnNAk1..^nBDisjnAk1..^nB
7 5 6 mpbiri N=DisjnNAk1..^nB
8 1 2 iundisj2fi Disjn1..^MAk1..^nB
9 disjeq1 N=1..^MDisjnNAk1..^nBDisjn1..^MAk1..^nB
10 8 9 mpbiri N=1..^MDisjnNAk1..^nB
11 7 10 jaoi N=N=1..^MDisjnNAk1..^nB
12 3 11 syl φDisjnNAk1..^nB