Step |
Hyp |
Ref |
Expression |
1 |
|
iundisj2cnt.0 |
⊢ Ⅎ 𝑛 𝐵 |
2 |
|
iundisj2cnt.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
3 |
|
iundisj2cnt.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
5 |
4 1 2
|
iundisj2f |
⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
6 |
|
disjeq1 |
⊢ ( 𝑁 = ℕ → ( Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝑁 = ℕ → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
8 |
1 2
|
iundisj2fi |
⊢ Disj 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
9 |
|
disjeq1 |
⊢ ( 𝑁 = ( 1 ..^ 𝑀 ) → ( Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ Disj 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑁 = ( 1 ..^ 𝑀 ) → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
11 |
7 10
|
jaoi |
⊢ ( ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |