| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj2cnt.0 |
⊢ Ⅎ 𝑛 𝐵 |
| 2 |
|
iundisj2cnt.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
| 3 |
|
iundisj2cnt.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 5 |
4 1 2
|
iundisj2f |
⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
| 6 |
|
disjeq1 |
⊢ ( 𝑁 = ℕ → ( Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝑁 = ℕ → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 8 |
1 2
|
iundisj2fi |
⊢ Disj 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
| 9 |
|
disjeq1 |
⊢ ( 𝑁 = ( 1 ..^ 𝑀 ) → ( Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ Disj 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 10 |
8 9
|
mpbiri |
⊢ ( 𝑁 = ( 1 ..^ 𝑀 ) → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 11 |
7 10
|
jaoi |
⊢ ( ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |