Step |
Hyp |
Ref |
Expression |
1 |
|
iundisj2fi.0 |
⊢ Ⅎ 𝑛 𝐵 |
2 |
|
iundisj2fi.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
3 |
|
tru |
⊢ ⊤ |
4 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
5 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑥 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
6 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑦 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
7 |
5 6
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
8 |
7
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
9 |
4 8
|
orbi12d |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
10 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑦 = 𝑥 ) ) |
11 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
12 |
10 11
|
bitrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
13 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑦 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
14 |
|
csbeq1 |
⊢ ( 𝑏 = 𝑥 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
15 |
13 14
|
ineqan12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
16 |
|
incom |
⊢ ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
17 |
15 16
|
eqtrdi |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
18 |
17
|
eqeq1d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
19 |
12 18
|
orbi12d |
⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
20 |
|
fzossnn |
⊢ ( 1 ..^ 𝑁 ) ⊆ ℕ |
21 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
22 |
20 21
|
sstri |
⊢ ( 1 ..^ 𝑁 ) ⊆ ℝ |
23 |
22
|
a1i |
⊢ ( ⊤ → ( 1 ..^ 𝑁 ) ⊆ ℝ ) |
24 |
|
biidd |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) ) → ( ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
25 |
|
nesym |
⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 = 𝑦 ) |
26 |
22
|
sseli |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → 𝑥 ∈ ℝ ) |
27 |
22
|
sseli |
⊢ ( 𝑦 ∈ ( 1 ..^ 𝑁 ) → 𝑦 ∈ ℝ ) |
28 |
|
id |
⊢ ( 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) |
29 |
|
leltne |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
30 |
26 27 28 29
|
syl3an |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
31 |
|
vex |
⊢ 𝑥 ∈ V |
32 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑥 / 𝑛 ⦌ 𝐴 |
33 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ..^ 𝑥 ) |
34 |
33 1
|
nfiun |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 |
35 |
32 34
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
36 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑥 → 𝐴 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
37 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) ) |
38 |
37
|
iuneq1d |
⊢ ( 𝑛 = 𝑥 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
39 |
36 38
|
difeq12d |
⊢ ( 𝑛 = 𝑥 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ) |
40 |
31 35 39
|
csbief |
⊢ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
41 |
|
vex |
⊢ 𝑦 ∈ V |
42 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 |
43 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 1 ..^ 𝑦 ) |
44 |
43 1
|
nfiun |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 |
45 |
42 44
|
nfdif |
⊢ Ⅎ 𝑛 ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
46 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) |
47 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) ) |
48 |
47
|
iuneq1d |
⊢ ( 𝑛 = 𝑦 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
49 |
46 48
|
difeq12d |
⊢ ( 𝑛 = 𝑦 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
50 |
41 45 49
|
csbief |
⊢ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
51 |
40 50
|
ineq12i |
⊢ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
52 |
|
simp1 |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑁 ) ) |
53 |
20 52
|
sselid |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ ) |
54 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
55 |
53 54
|
eleqtrdi |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
56 |
|
simp2 |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 1 ..^ 𝑁 ) ) |
57 |
20 56
|
sselid |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ ) |
58 |
57
|
nnzd |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ ) |
59 |
|
simp3 |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) |
60 |
|
elfzo2 |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) ) |
61 |
55 58 59 60
|
syl3anbrc |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) ) |
62 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
63 |
62 1 2
|
csbhypf |
⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
64 |
63
|
equcoms |
⊢ ( 𝑘 = 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
65 |
64
|
eqcomd |
⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
66 |
65
|
ssiun2s |
⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
67 |
61 66
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
68 |
67
|
ssdifssd |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
69 |
68
|
ssrind |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
70 |
51 69
|
eqsstrid |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
71 |
|
disjdif |
⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ |
72 |
|
sseq0 |
⊢ ( ( ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
73 |
70 71 72
|
sylancl |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
74 |
73
|
3expia |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
75 |
74
|
3adant3 |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
76 |
30 75
|
sylbird |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑦 ≠ 𝑥 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
77 |
25 76
|
syl5bir |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
78 |
77
|
orrd |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
79 |
78
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑥 ≤ 𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
80 |
9 19 23 24 79
|
wlogle |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
81 |
3 80
|
mpan |
⊢ ( ( 𝑥 ∈ ( 1 ..^ 𝑁 ) ∧ 𝑦 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
82 |
81
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 1 ..^ 𝑁 ) ∀ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
83 |
|
disjors |
⊢ ( Disj 𝑛 ∈ ( 1 ..^ 𝑁 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ( 1 ..^ 𝑁 ) ∀ 𝑦 ∈ ( 1 ..^ 𝑁 ) ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
84 |
82 83
|
mpbir |
⊢ Disj 𝑛 ∈ ( 1 ..^ 𝑁 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |