Step |
Hyp |
Ref |
Expression |
1 |
|
iundisjcnt.0 |
⊢ Ⅎ 𝑛 𝐵 |
2 |
|
iundisjcnt.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
3 |
|
iundisjcnt.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝑀 ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
5 |
4 1 2
|
iundisjf |
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → 𝑁 = ℕ ) |
7 |
6
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ ℕ 𝐴 ) |
8 |
6
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ∪ 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
9 |
5 7 8
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑁 = ℕ ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
10 |
1 2
|
iundisjfi |
⊢ ∪ 𝑛 ∈ ( 1 ..^ 𝑀 ) 𝐴 = ∪ 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → 𝑁 = ( 1 ..^ 𝑀 ) ) |
12 |
11
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ ( 1 ..^ 𝑀 ) 𝐴 ) |
13 |
11
|
iuneq1d |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ∪ 𝑛 ∈ ( 1 ..^ 𝑀 ) ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
14 |
10 12 13
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑁 = ( 1 ..^ 𝑀 ) ) → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
15 |
9 14 3
|
mpjaodan |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |