Metamath Proof Explorer


Theorem iundisjcnt

Description: Rewrite a countable union as a disjoint union. (Contributed by Thierry Arnoux, 16-Feb-2017)

Ref Expression
Hypotheses iundisjcnt.0 _ n B
iundisjcnt.1 n = k A = B
iundisjcnt.2 φ N = N = 1 ..^ M
Assertion iundisjcnt φ n N A = n N A k 1 ..^ n B

Proof

Step Hyp Ref Expression
1 iundisjcnt.0 _ n B
2 iundisjcnt.1 n = k A = B
3 iundisjcnt.2 φ N = N = 1 ..^ M
4 nfcv _ k A
5 4 1 2 iundisjf n A = n A k 1 ..^ n B
6 simpr φ N = N =
7 6 iuneq1d φ N = n N A = n A
8 6 iuneq1d φ N = n N A k 1 ..^ n B = n A k 1 ..^ n B
9 5 7 8 3eqtr4a φ N = n N A = n N A k 1 ..^ n B
10 1 2 iundisjfi n 1 ..^ M A = n 1 ..^ M A k 1 ..^ n B
11 simpr φ N = 1 ..^ M N = 1 ..^ M
12 11 iuneq1d φ N = 1 ..^ M n N A = n 1 ..^ M A
13 11 iuneq1d φ N = 1 ..^ M n N A k 1 ..^ n B = n 1 ..^ M A k 1 ..^ n B
14 10 12 13 3eqtr4a φ N = 1 ..^ M n N A = n N A k 1 ..^ n B
15 9 14 3 mpjaodan φ n N A = n N A k 1 ..^ n B