Metamath Proof Explorer


Theorem iundisjf

Description: Rewrite a countable union as a disjoint union. Cf. iundisj . (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses iundisjf.1 _kA
iundisjf.2 _nB
iundisjf.3 n=kA=B
Assertion iundisjf nA=nAk1..^nB

Proof

Step Hyp Ref Expression
1 iundisjf.1 _kA
2 iundisjf.2 _nB
3 iundisjf.3 n=kA=B
4 ssrab2 n|xA
5 nnuz =1
6 4 5 sseqtri n|xA1
7 rabn0 n|xAnxA
8 7 biimpri nxAn|xA
9 infssuzcl n|xA1n|xAsupn|xA<n|xA
10 6 8 9 sylancr nxAsupn|xA<n|xA
11 nfrab1 _nn|xA
12 nfcv _n
13 nfcv _n<
14 11 12 13 nfinf _nsupn|xA<
15 nfcv _n
16 14 nfcsb1 _nsupn|xA</nA
17 16 nfcri nxsupn|xA</nA
18 csbeq1a n=supn|xA<A=supn|xA</nA
19 18 eleq2d n=supn|xA<xAxsupn|xA</nA
20 14 15 17 19 elrabf supn|xA<n|xAsupn|xA<xsupn|xA</nA
21 10 20 sylib nxAsupn|xA<xsupn|xA</nA
22 21 simpld nxAsupn|xA<
23 21 simprd nxAxsupn|xA</nA
24 22 nnred nxAsupn|xA<
25 24 ltnrd nxA¬supn|xA<<supn|xA<
26 eliun xk1..^supn|xA<Bk1..^supn|xA<xB
27 nfcv _k
28 1 nfcri kxA
29 27 28 nfrexw knxA
30 28 27 nfrabw _kn|xA
31 nfcv _k
32 nfcv _k<
33 30 31 32 nfinf _ksupn|xA<
34 33 32 33 nfbr ksupn|xA<<supn|xA<
35 24 ad2antrr nxAk1..^supn|xA<xBsupn|xA<
36 elfzouz k1..^supn|xA<k1
37 36 5 eleqtrrdi k1..^supn|xA<k
38 37 ad2antlr nxAk1..^supn|xA<xBk
39 38 nnred nxAk1..^supn|xA<xBk
40 simpr nxAk1..^supn|xA<xBxB
41 nfcv _nk
42 2 nfcri nxB
43 3 eleq2d n=kxAxB
44 41 15 42 43 elrabf kn|xAkxB
45 38 40 44 sylanbrc nxAk1..^supn|xA<xBkn|xA
46 infssuzle n|xA1kn|xAsupn|xA<k
47 6 45 46 sylancr nxAk1..^supn|xA<xBsupn|xA<k
48 elfzolt2 k1..^supn|xA<k<supn|xA<
49 48 ad2antlr nxAk1..^supn|xA<xBk<supn|xA<
50 35 39 35 47 49 lelttrd nxAk1..^supn|xA<xBsupn|xA<<supn|xA<
51 50 exp31 nxAk1..^supn|xA<xBsupn|xA<<supn|xA<
52 29 34 51 rexlimd nxAk1..^supn|xA<xBsupn|xA<<supn|xA<
53 26 52 biimtrid nxAxk1..^supn|xA<Bsupn|xA<<supn|xA<
54 25 53 mtod nxA¬xk1..^supn|xA<B
55 23 54 eldifd nxAxsupn|xA</nAk1..^supn|xA<B
56 csbeq1 m=supn|xA<m/nA=supn|xA</nA
57 33 nfeq2 km=supn|xA<
58 nfcv _k1..^m
59 nfcv _k1
60 nfcv _k..^
61 59 60 33 nfov _k1..^supn|xA<
62 oveq2 m=supn|xA<1..^m=1..^supn|xA<
63 eqidd m=supn|xA<B=B
64 57 58 61 62 63 iuneq12df m=supn|xA<k1..^mB=k1..^supn|xA<B
65 56 64 difeq12d m=supn|xA<m/nAk1..^mB=supn|xA</nAk1..^supn|xA<B
66 65 eleq2d m=supn|xA<xm/nAk1..^mBxsupn|xA</nAk1..^supn|xA<B
67 66 rspcev supn|xA<xsupn|xA</nAk1..^supn|xA<Bmxm/nAk1..^mB
68 22 55 67 syl2anc nxAmxm/nAk1..^mB
69 nfv mxAk1..^nB
70 nfcsb1v _nm/nA
71 nfcv _n1..^m
72 71 2 nfiun _nk1..^mB
73 70 72 nfdif _nm/nAk1..^mB
74 73 nfcri nxm/nAk1..^mB
75 csbeq1a n=mA=m/nA
76 oveq2 n=m1..^n=1..^m
77 76 iuneq1d n=mk1..^nB=k1..^mB
78 75 77 difeq12d n=mAk1..^nB=m/nAk1..^mB
79 78 eleq2d n=mxAk1..^nBxm/nAk1..^mB
80 69 74 79 cbvrexw nxAk1..^nBmxm/nAk1..^mB
81 68 80 sylibr nxAnxAk1..^nB
82 eldifi xAk1..^nBxA
83 82 reximi nxAk1..^nBnxA
84 81 83 impbii nxAnxAk1..^nB
85 eliun xnAnxA
86 eliun xnAk1..^nBnxAk1..^nB
87 84 85 86 3bitr4i xnAxnAk1..^nB
88 87 eqriv nA=nAk1..^nB