Metamath Proof Explorer


Theorem iundisjf

Description: Rewrite a countable union as a disjoint union. Cf. iundisj . (Contributed by Thierry Arnoux, 31-Dec-2016)

Ref Expression
Hypotheses iundisjf.1 _ k A
iundisjf.2 _ n B
iundisjf.3 n = k A = B
Assertion iundisjf n A = n A k 1 ..^ n B

Proof

Step Hyp Ref Expression
1 iundisjf.1 _ k A
2 iundisjf.2 _ n B
3 iundisjf.3 n = k A = B
4 ssrab2 n | x A
5 nnuz = 1
6 4 5 sseqtri n | x A 1
7 rabn0 n | x A n x A
8 7 biimpri n x A n | x A
9 infssuzcl n | x A 1 n | x A sup n | x A < n | x A
10 6 8 9 sylancr n x A sup n | x A < n | x A
11 nfrab1 _ n n | x A
12 nfcv _ n
13 nfcv _ n <
14 11 12 13 nfinf _ n sup n | x A <
15 nfcv _ n
16 14 nfcsb1 _ n sup n | x A < / n A
17 16 nfcri n x sup n | x A < / n A
18 csbeq1a n = sup n | x A < A = sup n | x A < / n A
19 18 eleq2d n = sup n | x A < x A x sup n | x A < / n A
20 14 15 17 19 elrabf sup n | x A < n | x A sup n | x A < x sup n | x A < / n A
21 10 20 sylib n x A sup n | x A < x sup n | x A < / n A
22 21 simpld n x A sup n | x A <
23 21 simprd n x A x sup n | x A < / n A
24 22 nnred n x A sup n | x A <
25 24 ltnrd n x A ¬ sup n | x A < < sup n | x A <
26 eliun x k 1 ..^ sup n | x A < B k 1 ..^ sup n | x A < x B
27 nfcv _ k
28 1 nfcri k x A
29 27 28 nfrex k n x A
30 28 27 nfrabw _ k n | x A
31 nfcv _ k
32 nfcv _ k <
33 30 31 32 nfinf _ k sup n | x A <
34 33 32 33 nfbr k sup n | x A < < sup n | x A <
35 24 ad2antrr n x A k 1 ..^ sup n | x A < x B sup n | x A <
36 elfzouz k 1 ..^ sup n | x A < k 1
37 36 5 eleqtrrdi k 1 ..^ sup n | x A < k
38 37 ad2antlr n x A k 1 ..^ sup n | x A < x B k
39 38 nnred n x A k 1 ..^ sup n | x A < x B k
40 simpr n x A k 1 ..^ sup n | x A < x B x B
41 nfcv _ n k
42 2 nfcri n x B
43 3 eleq2d n = k x A x B
44 41 15 42 43 elrabf k n | x A k x B
45 38 40 44 sylanbrc n x A k 1 ..^ sup n | x A < x B k n | x A
46 infssuzle n | x A 1 k n | x A sup n | x A < k
47 6 45 46 sylancr n x A k 1 ..^ sup n | x A < x B sup n | x A < k
48 elfzolt2 k 1 ..^ sup n | x A < k < sup n | x A <
49 48 ad2antlr n x A k 1 ..^ sup n | x A < x B k < sup n | x A <
50 35 39 35 47 49 lelttrd n x A k 1 ..^ sup n | x A < x B sup n | x A < < sup n | x A <
51 50 exp31 n x A k 1 ..^ sup n | x A < x B sup n | x A < < sup n | x A <
52 29 34 51 rexlimd n x A k 1 ..^ sup n | x A < x B sup n | x A < < sup n | x A <
53 26 52 syl5bi n x A x k 1 ..^ sup n | x A < B sup n | x A < < sup n | x A <
54 25 53 mtod n x A ¬ x k 1 ..^ sup n | x A < B
55 23 54 eldifd n x A x sup n | x A < / n A k 1 ..^ sup n | x A < B
56 csbeq1 m = sup n | x A < m / n A = sup n | x A < / n A
57 33 nfeq2 k m = sup n | x A <
58 nfcv _ k 1 ..^ m
59 nfcv _ k 1
60 nfcv _ k ..^
61 59 60 33 nfov _ k 1 ..^ sup n | x A <
62 oveq2 m = sup n | x A < 1 ..^ m = 1 ..^ sup n | x A <
63 eqidd m = sup n | x A < B = B
64 57 58 61 62 63 iuneq12df m = sup n | x A < k 1 ..^ m B = k 1 ..^ sup n | x A < B
65 56 64 difeq12d m = sup n | x A < m / n A k 1 ..^ m B = sup n | x A < / n A k 1 ..^ sup n | x A < B
66 65 eleq2d m = sup n | x A < x m / n A k 1 ..^ m B x sup n | x A < / n A k 1 ..^ sup n | x A < B
67 66 rspcev sup n | x A < x sup n | x A < / n A k 1 ..^ sup n | x A < B m x m / n A k 1 ..^ m B
68 22 55 67 syl2anc n x A m x m / n A k 1 ..^ m B
69 nfv m x A k 1 ..^ n B
70 nfcsb1v _ n m / n A
71 nfcv _ n 1 ..^ m
72 71 2 nfiun _ n k 1 ..^ m B
73 70 72 nfdif _ n m / n A k 1 ..^ m B
74 73 nfcri n x m / n A k 1 ..^ m B
75 csbeq1a n = m A = m / n A
76 oveq2 n = m 1 ..^ n = 1 ..^ m
77 76 iuneq1d n = m k 1 ..^ n B = k 1 ..^ m B
78 75 77 difeq12d n = m A k 1 ..^ n B = m / n A k 1 ..^ m B
79 78 eleq2d n = m x A k 1 ..^ n B x m / n A k 1 ..^ m B
80 69 74 79 cbvrexw n x A k 1 ..^ n B m x m / n A k 1 ..^ m B
81 68 80 sylibr n x A n x A k 1 ..^ n B
82 eldifi x A k 1 ..^ n B x A
83 82 reximi n x A k 1 ..^ n B n x A
84 81 83 impbii n x A n x A k 1 ..^ n B
85 eliun x n A n x A
86 eliun x n A k 1 ..^ n B n x A k 1 ..^ n B
87 84 85 86 3bitr4i x n A x n A k 1 ..^ n B
88 87 eqriv n A = n A k 1 ..^ n B