| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundisj.1 |
|
| 2 |
|
ssrab2 |
|
| 3 |
|
nnuz |
|
| 4 |
2 3
|
sseqtri |
|
| 5 |
|
rabn0 |
|
| 6 |
5
|
biimpri |
|
| 7 |
|
infssuzcl |
|
| 8 |
4 6 7
|
sylancr |
|
| 9 |
|
nfrab1 |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfcv |
|
| 12 |
9 10 11
|
nfinf |
|
| 13 |
|
nfcv |
|
| 14 |
12
|
nfcsb1 |
|
| 15 |
14
|
nfcri |
|
| 16 |
|
csbeq1a |
|
| 17 |
16
|
eleq2d |
|
| 18 |
12 13 15 17
|
elrabf |
|
| 19 |
8 18
|
sylib |
|
| 20 |
19
|
simpld |
|
| 21 |
19
|
simprd |
|
| 22 |
20
|
nnred |
|
| 23 |
22
|
ltnrd |
|
| 24 |
|
eliun |
|
| 25 |
22
|
ad2antrr |
|
| 26 |
|
elfzouz |
|
| 27 |
26 3
|
eleqtrrdi |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
28
|
nnred |
|
| 30 |
1
|
eleq2d |
|
| 31 |
|
simpr |
|
| 32 |
30 28 31
|
elrabd |
|
| 33 |
|
infssuzle |
|
| 34 |
4 32 33
|
sylancr |
|
| 35 |
|
elfzolt2 |
|
| 36 |
35
|
ad2antlr |
|
| 37 |
25 29 25 34 36
|
lelttrd |
|
| 38 |
37
|
rexlimdva2 |
|
| 39 |
24 38
|
biimtrid |
|
| 40 |
23 39
|
mtod |
|
| 41 |
21 40
|
eldifd |
|
| 42 |
|
csbeq1 |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
iuneq1d |
|
| 45 |
42 44
|
difeq12d |
|
| 46 |
45
|
eleq2d |
|
| 47 |
46
|
rspcev |
|
| 48 |
20 41 47
|
syl2anc |
|
| 49 |
|
nfv |
|
| 50 |
|
nfcsb1v |
|
| 51 |
|
nfcv |
|
| 52 |
50 51
|
nfdif |
|
| 53 |
52
|
nfcri |
|
| 54 |
|
csbeq1a |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
iuneq1d |
|
| 57 |
54 56
|
difeq12d |
|
| 58 |
57
|
eleq2d |
|
| 59 |
49 53 58
|
cbvrexw |
|
| 60 |
48 59
|
sylibr |
|
| 61 |
|
eldifi |
|
| 62 |
61
|
reximi |
|
| 63 |
60 62
|
impbii |
|
| 64 |
|
eliun |
|
| 65 |
|
eliun |
|
| 66 |
63 64 65
|
3bitr4i |
|
| 67 |
66
|
eqriv |
|